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ABSTRACT 

Working with Digital Terrain Models (DTM) or 

Geographic Information Systems (GIS), Triangular 

Irregular Networks (TINs) is one of the most used 

ways to represent surface topology. Given this form or 

representation, this article investigates one initial 

probabilistic demonstration to quantify up to which 

accuracy σ (sigma) can be consider what is ambiguous 

from the topological point of view in 2D Delaunay 

triangularizations. To achieve it, we designed an initial 

demonstration that there is a maximum precision for 

which the network topology remains constant in a new 

Delaunay triangulation, at each point individually and 

in the Triangular Irregular Network as a whole. The 

methodological approach was experimental. Various 

mathematical experiments were carried out using the 

pseudorandom Monte Carlo Simulation method. First, 

for each point of the Network, and then for all network 

points for varied 𝜎. The experiments culminate in 

helping solve the problem of the existence of 

maximum 𝜎 for which the probability of occurrence in 

constant triangular irregular network topology is 

100%. The mathematical results gave rise to the 

following: Considering a TIN generated by Delaunay 

Triangulation, if any point of coordinates (𝑥𝑖, 𝑦𝑖) in a 

triangular irregular network is disrupted (has its place 

altered), according to a Normal distribution 𝑁(𝜇, 𝜎2), 

then, exists a value 𝜎𝑚𝑎𝑥 (sigma maximum) for which 

the topology of the Network remains constant. For 

example, it was found that 𝜎𝑚𝑎𝑥.1 of point 1 exists and 

is obtained by 𝜎𝑚𝑎𝑥.1 = 0.30866, and in point 2, 

𝜎𝑚𝑎𝑥.2 = 0.2. The results also indicate the following 

for Triangulated Irregular Networks: Every two-

dimensional irregular triangular Network generated by 

the Delaunay Triangulation has a value 𝜎∗ (sigma 

asterisk) to which the network topology remains 

constant. In this work, simulating the worst case of 

irregular triangular Network: 𝜎∗ = 0.2. Finally, it is 

concluded that the 𝜎 maximum for each point exists, 

as well as for the Network as a whole. However, 

results need to be tested in more extensive networks to 

prove (or not) if it always happened. We advance the 

knowledge on the Triangular Irregular Networks 

combining simulation techniques and network 

topology. 
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1 INTRODUCTION 

Geospatial sciences work with geometric and Geo-graphic Database (GDB) aspects. In 

geometric data acquisition, triangulation (Hegeman et al., 2014; Kas-trisios and Tsoulos, 2018; 

Kim et al., 2010) and/or trilateration (Cheng et al., 2004; Mazuelas et al., 2009) are important 

methods employed for populating these GDBs. These methods allow the generation of 

Triangular Irregular Networks (TIN) (Kastrisios and Tsoulos, 2018; Reuter et al., 2007) used 

in Geographic Information Systems (Kamel Boulos and Geraghty, 2020; Mollalo et al., 2020). 

This processing of Irregular Triangle Networks for the generation and extraction of geo-

metrics in GIS is influenced by the errors inherent in each vertex (Florinsky, 2002). In geodetic 

(Kastrisios and Tsoulos, 2018; Martínez et al., 2005; Sharp et al., 2019; Wang et al., 2000) and 
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topographic (Florinsky, 2002; Li et al., 2006) triangulations, the distances between vertices are 

very large, indicating that probably the interference in triangle generation is very small due to 

the relationship between point accuracy and edge length. However, in a TIN with smaller edges 

these errors further influence the generation of the triangles, which may vary as the vertex 

precision is reduced. Such errors indicate the mathematical and physical rigidity of their 

triangles.  

Considering in this context the acquisition of geometries for GIS from triangulation 

networks, this research aims to understand the following question: to what extent a change in 

the quality of adjustment, i.e. increasing or decreasing the accuracy in the points, the 

triangulation would still be considered stable. To attend to this research question, we develop 

an initial demonstration to show that, there is a maximum precision for which the network 

topology remains constant after a new Delaunay Triangulation. First simulated at each point 

initially and then on the TIN as a whole. From these initial experiments, it is possible to 

recognize patterns capable of generating new TINs with similar triangulation, same topology 

and same statistical quality as the original. 

This article aims to contribute to results that quantify to what accuracy the σ (sigma) 

can consider what is topologically ambiguous in an Irregular Triangulated Network. We 

advance the knowledge about the topology of Triangulated Irregular Networks using Monte 

Carlo simulation techniques (Carmel et al., 2009; Gugiu and Dumitrache, 2005; Walȩdzik and 

Mańdziuk, 2018). 

 

2 THEORETICAL FUNDAMENTATION 

Theoretical content about the definition of Triangular Irregular Networks (TIN) by 

means of Delaunay Triangulation, topology of a TIN, and Monte Carlo simulation method are 

essential aspects for the understanding of this work. 

 

2.1 THE CREATION OF AN TRIANGULAR IRREGULAR NETWORK 

There are several algorithms for generating a Triangular Irregular Network (TIN) from 

a dot mesh. Among them, Delaunay Triangulation (Kastrisios and Tsoulos, 2018; Zeiler, 1999; 

Felgueiras and Goodchild, 1995; Tsai, 1993; Fernandes and Menezes, 2005) allows generating 

triangles as homogeneous and close to an equilateral triangle as possible, optimizing the 

represented surface. In addition, it is the most popular used for this conversion, and is present 

in virtually all Geographic Information Systems. Thus, TIN is a vector data format defined by 
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a triangulation from a set of sample points irregularly distributed in coordinates (x,y), with 

respective z values, usually referring to altimetry, which allow mathematical modeling of a 

surface through a network.  

 

2.2 TOPOLOGY OF A TRIANGULAR IRREGULAR NETWORK 

The geometric topological vector relationship in an Triangular Irregular Network is the 

core of this article. According to Casanova et al (2005), topology is the part of mathematics that 

investigates the properties of configurations that remain invariant in transformations of rotation, 

translation and scale. These are spatial relations that are independent of geometry, but rather of 

the elements of topological vector relationships. These elements are generically: connectivity, 

adjacency, and contingency. Erciyes (2013), defines the connectivity or connectedness of a 

graph as follows: “A graph is connected if there is a path between any pair of vertices v1 and 

v2." The adjacency is the neighborhood information of spatial objects, where an edge 

determines the left and right polygon. Finally, contingency is information about the inclusion 

of a spatial object within another spatial object. Of these elements of the topological vector 

relationship, connectivity is essential to the present study, as far as TIN is concerned. The 

topology of an triangular irregular network is considered constant if, with changing the 

coordinates of the vertices, the triangles remain the same after a new Delaunay Triangulation. 

 

2.3 MONTE CARLO SIMULATION 

Another aspect essential to the understanding of this paper is the Monte Carlo method 

(Me-tropolis et al., 1953; Amar, 2006; Mark and Mordechai, 2011), named after the Monte 

Carlo Casino in the principality of Monaco. It is an application of inferential statistics. Amar 

(2006) describes some of the algorithms that have been developed to perform Monte Carlo 

simulations. In this paper, Monte Carlo simulation is used in experimentation on the effect of 

random errors on each coordinate of an original point in the Triangular Irregular Network. 

 

3 METHOD 

In the first stage the initial mathematical modeling is defined. The two-dimensional 

point being 

 

𝐴 = [
𝑥1

𝑦1
] 
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In which: 

 

(∀𝑥1 ∈ 𝑥)(∃𝑦1 ∈ 𝑦)((𝑥1, 𝑦1) ∈ ℜ2) 

 

Your errors being 𝜎𝑥1
 e 𝜎𝑦1

 associated with the coordinates in 𝑥 and 𝑦; and its tendencies 

𝜏𝑥𝑖
 e 𝜏𝑦𝑖

 associated to the coordinates in 𝑥 e 𝑦. Mathematically, it starts from the premise of 

uncertainty associated with the geometric coordinates of each point in a Geographic Database. 

Therefore, analogously, also associated to line and polygon geometries. From this statement, 

the true Cartesian coordinate of a point A can be defined by: 

 

�̂� = [
𝑥1 + 𝜏𝑥 ± 𝜎𝑥1

𝑦1 + 𝜏𝑦 ± 𝜎𝑦1

] = [
𝑥1

𝑦1
] + [

𝜏𝑥

𝜏𝑦
] ± [

𝜎𝑥1

𝜎𝑦1
] 

 

So generically the uncertainty of a two-dimensional point can be written as: 

�̂�𝑖 = [
𝑥𝑖 + 𝜏𝑥 ± 𝜎𝑥𝑖

𝑦𝑖 + 𝜏𝑦 ± 𝜎𝑦𝑖

] = [
𝑥𝑖

𝑦𝑖
] + [

𝜏𝑥

𝜏𝑦
] ± [

𝜎𝑥𝑖

𝜎𝑦𝑖
] 

 

As this research does not aim to study tendencies, we considered 𝜏 = 0.  

From these initial definitions, we considered some sets of randomized experiments with 

disturbance (coordinate changes) of each point in the network, called local experiments or 

simulations. For the purposes of this text, the terms disturbance, noise and point oscillation are 

used synonymously. The term simulation refers to the triangular irregular network whose points 

are being disturbed. Furthermore, from the experiments we sought to recognize whether there 

is and to what accuracy 𝜎 (sigma) the topology produced by the triangulation can be considered 

constant. With this, an algorithm was implemented to compare topologies of triangular irregular 

networks. 
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FIG. 1 Example of topology simulation of an triangular irregular network, triangulated by the Delaunay method, 

by changing points V1 and V4. 

 

 

Figure 1 presents two simulation examples with constant topology. The first graph 

shows the original Delaunay Triangulation, in red; the second graph shows the disturbance at 

point 1 (V1), with the simulated triangulations in blue; and the third graph shows the 

disturbances at point 4 (V4), with the simulated triangulations also in blue.  

The experiments were performed on a simulated network with 4 points and a lozenge 

configuration, in order to allow testing the methodology and the local behaviors for, in later 

stages of the research, applying it to triangular irregular networks with more vertices. Random 

mathematical experiments were performed using the Monte Carlo method. 

For the simulation, at each point a noise was inserted k times, in such a way as to 

simulate the disturbance of the original point. The point disturbance was performed by 

generating noise according to the standardized normal distribution, which has mean zero and 

variance equal to 1, therefore:  

 

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
 

 

The formula was rewritten in x and y by:  

 

𝑧𝑥𝑖
=

𝑥𝑖−𝑥(𝑝𝑜𝑛𝑡𝑜)

𝜎
  e  𝑧𝑦𝑖

=
𝑦𝑖−𝑦(𝑝𝑜𝑛𝑡𝑜)

𝜎
 

 

In the simulations it was done: 

𝜎. 𝑧 = �̂� − 𝑥(𝑝𝑜𝑛𝑡𝑜) e 𝜎. 𝑧 = �̂� − 𝑦(𝑝𝑜𝑛𝑡𝑜) 
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Therefore, 

�̂�𝑖 = (𝜎. 𝑧𝑖) + 𝑥(𝑝𝑜𝑛𝑡𝑜); �̂�𝑖 = (𝜎. 𝑧𝑖) + 𝑦(𝑝𝑜𝑛𝑡𝑜) 

 

 

In which �̂�𝑖 e �̂�𝑖 are the new coordinates obtained by perturbing each original point and 

𝑖 = 1, … , 𝑘. For the generation of normally distributed pseudo-random numbers the Marsaglia 

and Tsang Ziggurat method was chosen, described in Marsaglia and Tsang, 2000. 

Initially, oscillations were performed for each point in the network in an isolated 

manner. Each vertex was initially disturbed with 𝜎𝑥𝑖
= 𝜎𝑦𝑖

= 1, generically modeled on the 

form: 

 

�̂�𝑖 = [
𝑥𝑖 ± 𝜎𝑥𝑖

𝑦𝑖 ± 𝜎𝑦𝑖

] = [
𝑥𝑖

𝑦𝑖
] ± [

𝜎𝑥𝑖

𝜎𝑦𝑖
] 

 

Then the simulation was performed on the network for varied σ. The first simulated 

network was composed of 4 points 𝑉𝑖 = [
𝑥𝑖

𝑦𝑖
], forming a rhombus of coordinates 𝑉1 = [

𝑥1

𝑦1
] =

[
2
0

], 𝑉2 = [
0
1

], 𝑉3 = [
−2
0

], 𝑉4 = [
0

−1
]. This network was chosen initially because it is the 

smallest amount of points that allows for different triangulations during its disturbance. The 

choice in rhombus shape was motivated by being a simple geometry for the initial analyses. 

 

4 RESULTS 

The results of the Monte Carlo simulations are presented at each point in the network 

separately, followed by an analysis of the results. The figures show the simulations performed 

at point 𝑉1 (figura 2 e figura 3) and in point 𝑉2 (figura 4 e figura 5). All analyses concerning the 

points 𝑉3 e 𝑉4 are analogue, since they are symmetrical. 
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FIG. 1 Simulated experiments for 𝑘 = 10, 50, 100 e 1000, all with 𝜎 =  1.0. 

 

The figure (FIG. 2) shows the representative figures of all simulated Delaunay 

Triangulations: (i) Without topology comparison, i.e., keeping the 𝑘 disturbances referring to 

the original point 1. In it, the simulated triangulations are shown in blue; (ii) The triangulations 

with constant topology, i.e., 𝑘𝑇𝐶 ≤ 𝑘, in which 𝑘𝑇𝐶 is the amount of disturbances with constant 

topology (TC), also in blue; and (iii) The resulting convex closure of the points with noise that 

allowed generating Delaunay Triangulations with the same topology as the original network, 

shown in green. Random experiments were performed for 𝑘 = 10, 50, 100 e 1000, presented 

each in a row with the 3 graphs described, initially with 𝜎 = 1. It has been shown necessary to 
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identify for other σ what is the behavior of the region through which point 1 can oscillate and 

yet remain with constant topology. 

 

FIG. 2 Local convex closures of the disturbed point for simulations with 𝜎 = 0.1, 0.3, 0.5 and 1.0; each one with 

𝑘 = 10, 100, 500, 1000. 

 

Figure 3 shows the points and convex closures that bound the constant topology region 

with different simulations, changing the value of σ to 0.1, 0.3, 0.5 e 1.0; each one with 𝑘 = 10, 

100, 500, 1000. In the figure are shown in each line 𝑘 =  10, 100, 500, 1000 para 𝜎 = 0.1; 𝑘 =

 10, 100, 500, 1000 to 𝜎 = 0.3; and so forth. 
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FIG. 1 Simulations to 𝑘 = 10, 50, 100 e 1000, with 𝜎 = 1.0. 

 

 

 

 

 

In the second simulation we performed disturbances at the point 𝑉2. As in vertex 1, 

experiments were carried out at point 2 with 𝑘 = 10, 50, 100 e 1000, with 𝜎 = 1.0. Afterwards 

(FIG. 1), experiments allow recognizing behavior patterns when σ is variable. 
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FIG. 2 Experiments for the convex closure of the points with simulations for 𝜎 = 0.1, 0.3, 0.5 e 1.0; each one 

with 𝑘 =10, 100, 500, 1000. 

 

Likewise, in order to identify the pattern of behavior for various σ when the topology 

remains unchanged, simulations were performed for values of σ= 0.1, 0.3, 0.5, and 1.0; each 

experiment with perturbations k=10, 100, 500, 1000. Figure 5 presents these results, such that 

to each row of graphs are shown all experiments of a given σ, with k in increasing order. 

 

5 DISCUSSIONS 

Monte Carlo simulation is used to solve the problem of identifying the existence of 

maximum σ for which the probability of constant topology occurring in the irregular triangular 

network is 100% after a new triangulation by Delaunay's method. The mathematical results 

gave origin to the following statements. 

Consider a Triangular Irregular Network (TIN) generated from Delaunay Triangulation. 

If any point of coordinates (xi, yi) is disturbed (has its place changed), according to a Normal 

distribution N(μ, σ2), then there is a value σmax (maximum sigma) to which the TIN topology 

will remain constant 



 

  

Principles and Concepts for development in nowadays Society:  Monte carlo simulation in triangular 

irregular networks 
 

94 

Demonstration: To find the maximum sigma 𝜎𝑚𝑎𝑥 for which the topology remains 

constant, we performed thousands of disturbances at point 1 as follows: 𝜎 varying from 0.1 a 5 

with intervals of 0.1; 0.01; 0.001; 0.0001; ...; 0.000001; according to Table 1. 

 

TAB. 1 Simulation results with σ varying from 0.1 a 5 with intervals of 0.1; 0.01; 0.001; 0.0001; ...; 0.000001 

Variation intervals 

of 𝝈  

Results of 𝝈𝒎𝒂𝒙.𝟏 

to 𝑷(𝑻𝑪 = 𝟏) = 𝟏 

Results of 𝝈𝒎𝒊𝒏.𝟏 

to 𝑷(𝑻𝑪 = 𝟏) < 1 

0.1:0.01:0.5 𝜎 = 0.38000 𝜎 = 0.39000 

0.1:0.001:0.5 𝜎 = 0.35100 𝜎 = 0.35200 

0.1:0.0001:0.5 𝜎 = 0.30920 𝜎 = 0.30930 

0.1:0.00001:0.5 𝜎 = 0.30866 𝜎 = 0.30867 

0.1:0.000001:0.5 𝜎 = 0.30909 𝜎 = 0.30909 

 

With this, it is verified that 𝜎𝑚𝑎𝑥.1 of point 1 exists and is obtained by 𝜎𝑚𝑎𝑥.1 =

min(𝜎𝑚𝑎𝑥) = 0.30866. For point 2, in order to find 𝜎𝑚𝑎𝑥.2 the simulations were performed as 

shown in Table 2. 

 

TAB. 2 Simulation results with σ varying from 0.1 a 5 with intervals of 0.1; 0.01; 0.001; 0.0001; ...; 0.000001 

Variation intervals 

of 𝝈 

Results of 𝝈𝒎𝒂𝒙.𝟐 

to 𝑷(𝑻𝑪 = 𝟏) = 𝟏 

Results of 𝝈𝒎𝒊𝒏.𝟐 

to 𝑷(𝑻𝑪 = 𝟏) < 1 

0.1:0.1:0.5 𝜎 =  0.20000 𝜎 =  0.30000 

0.1:0.01:0.5 𝜎 =  0.26000 𝜎 =  0.27000 

0.1:0.001:0.5 𝜎 =  0.25700 𝜎 =  0.25800 

0.1:0.0001:0.5 𝜎 =  0.25190 𝜎 =  0.25200 

0.2:0.00001:0.5 𝜎 =  0.20240 𝜎 =  0.20241 

 

With this, it was identified that 𝜎𝑚𝑎𝑥.2 = 0.2. 

 

6 CONCLUSIONS 

From the analysis of the simulated experiments performed using Monte Carlo 

Simulation, the following can be proposed regarding the maximum oscillation of the points in 

the Triangular Irregular Network. 

Every Triangular Irregular Network (TIN) generated from two-dimensional Delaunay 

Triangulation has a value σ∗ (sigma asterisk) for which the network topology will remain 

constant, obtained by: 

 

𝜎∗ = min(𝑚𝑎𝑥𝜎𝑖) = min(𝜎𝑚𝑎𝑥.1, 𝜎𝑚𝑎𝑥.2, … , 𝜎𝑚𝑎𝑥.𝑛) 
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Demonstration: Generalizing, making the worst case triangular irregular network as: 

𝜎∗ = min(𝜎𝑚𝑎𝑥.1, 𝜎𝑚𝑎𝑥.2) = min(0.30866, 0.2) = 0.2. 

Note that, although the Monte Carlo method is computationally inefficient, being 

dependent on a large number of disturbances (changing the coordinates of the points) to obtain 

the probabilistic results, it proved to be adequate for this type of demonstrative research.  

Finally, it is possible to conclude, for the simulated cases, that there is a maximum σ for 

each point of the irregular triangular network triangulated by the Delaunay criterion, as well as, 

there is a maximum σ for which the network as a whole remains with its topology constant. It 

is suggested that in future work, simulated experiments with multiple irregular triangular 

networks with multiple sizes be performed, in addition to simulations on real networks to prove 

(or not) the statements proposed in this paper. 
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