Seven Editora
##common.pageHeaderLogo.altText##
##common.pageHeaderLogo.altText##


Contacto

  • Seven Publicações Ltda CNPJ: 43.789.355/0001-14 Rua: Travessa Aristides Moleta, 290- São José dos Pinhais/PR CEP: 83045-090
  • Contacto principal
  • Nathan Albano Valente
  • (41) 9 8836-2677
  • editora@sevenevents.com.br
  • Contacto de soporte
  • contato@sevenevents.com.br

Machine learning model evaluation on healthcare applications: A Review

Souza CMP;
Barreto CAS;
Macedo LV;
Brito BAO;
Targino VV;
Betcel EC;
Almeida FG;
Rodrigues AAG;
Malaquias RS;
Filho IMB

Cezar Miranda Paula de Souza

Cephas Alves da Silveira Barreto

Lhayana Vieira de Macedo

Bruna Alice Oliveira de Brito

Victor Vieira Targino

Emanuel Costa Betcel

Fernando Gomes de Almeida

Arthur Andrade Galvíncio Rodrigues

Ramon Santos Malaquias

Itamir de Morais Barroca Filho


Resumen

Machine Learning (ML) models have been applied to solve problems in various fields, which necessarily involves proper evaluation of models to ensure performance. Once deployed, ML models are subject to performance issues, such as those related to changes in data (drift). This type of issue has prompted efforts in model analysis and maintenance, as well as in continual learning, which seeks the ability to continuously learn from a (continuous) stream of data. Therefore, it's important to understand and develop methodologies that can be used to evaluate ML models, making their use in real-world environments feasible. Amongst current areas of application for ML, one that stands out, in particular, is Machine Learning for Healthcare, especially in conjunction with Software for Decision Support of Medical Applications, which presents specific challenges for the evaluation and monitoring of models, particularly given that incorrect prediction or classification can lead to life-threatening situations. This paper presents a systematic literature review that aims at identifying state-of-the-art techniques for evaluating and maintaining ML models for healthcare in effective use in the real world.

 

DOI:https://doi.org/10.56238/interdiinovationscrese-013


Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2023 Cezar Miranda Paula de Souza, Cephas Alves da Silveira Barreto, Lhayana Vieira de Macedo, Bruna Alice Oliveira de Brito, Victor Vieira Targino, Emanuel Costa Betcel, Fernando Gomes de Almeida, Arthur Andrade Galvíncio Rodrigues, Ramon Santos Malaquias, Itamir de Morais Barroca Filho

##plugins.themes.gdThemes.article.Authors##

  • Cezar Miranda Paula de Souza
  • Cephas Alves da Silveira Barreto
  • Lhayana Vieira de Macedo
  • Bruna Alice Oliveira de Brito
  • Victor Vieira Targino
  • Emanuel Costa Betcel
  • Fernando Gomes de Almeida
  • Arthur Andrade Galvíncio Rodrigues
  • Ramon Santos Malaquias
  • Itamir de Morais Barroca Filho