Seven Editora
##common.pageHeaderLogo.altText##
##common.pageHeaderLogo.altText##


Contact

  • Seven Publicações Ltda CNPJ: 43.789.355/0001-14 Rua: Travessa Aristides Moleta, 290- São José dos Pinhais/PR CEP: 83045-090
  • Principal Contact
  • Nathan Albano Valente
  • (41) 9 8836-2677
  • editora@sevenevents.com.br
  • Support Contact
  • contato@sevenevents.com.br

APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE PREDICTION OF ONCOLOGICAL PROGNOSIS: INNOVATIONS, OBSTACLES AND POSSIBILITIES FOR THERAPEUTIC PERSONALIZATION

Andreus Cristhian Linhares Andrade

Abner Eliezer Lourenço

Karina Augusta Sarto Nery Franzner

Heitor Bortolucci Pfeil

Roberto Guilherme Rosa Morais

Fabiany Lago Barbosa Hollen

Edilaine Maria Candido de Siqueira Sarra

Gabriella Vieira de Oliveira

Camila Régis Banhara

Emerson Rubens Mendonça Rodrigues

Yuri Plegge Ristow Wippel

Gabrielly Fernandes Costa

Bruna Machado Guim

Victor Vinicius Carvalho Paz

Paula Fernanda Amorim Kirche


Keywords


Abstract

This systematic review investigates the application of Artificial Intelligence (AI) in the prediction of cancer prognosis, with an emphasis on the personalization of treatments. We analyzed 78 studies that used AI algorithms, such as Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs), in breast, lung, colorectal, and prostate cancers. The main outcomes addressed recurrence, survival, and therapeutic response. The results demonstrated that AI improves accuracy in identifying relapses and predicting treatment response, facilitating personalized interventions. However, the heterogeneity of the data and the lack of standardization represent obstacles to large-scale clinical implementation. The review also highlights the future prospects for integrating AI into precision medicine, favoring the development of more effective and individualized cancer treatments. It is concluded that, although the advances are promising, collaboration between health professionals and AI, the establishment of clear regulations, and the construction of consistent databases are fundamental to the success of AI in oncology.

DOI: https://doi.org/10.56238/sevened2024.039-005


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Andreus Cristhian Linhares Andrade, Abner Eliezer Lourenço , Karina Augusta Sarto Nery Franzner, Heitor Bortolucci Pfeil, Roberto Guilherme Rosa Morais, Fabiany Lago Barbosa Hollen, Edilaine Maria Candido de Siqueira Sarra, Gabriella Vieira de Oliveira, Camila Régis Banhara, Emerson Rubens Mendonça Rodrigues, Yuri Plegge Ristow Wippel, Gabrielly Fernandes Costa, Bruna Machado Guim, Victor Vinicius Carvalho Paz, Paula Fernanda Amorim Kirche

Author(s)

  • Andreus Cristhian Linhares Andrade
  • Abner Eliezer Lourenço
  • Karina Augusta Sarto Nery Franzner
  • Heitor Bortolucci Pfeil
  • Roberto Guilherme Rosa Morais
  • Fabiany Lago Barbosa Hollen
  • Edilaine Maria Candido de Siqueira Sarra
  • Gabriella Vieira de Oliveira
  • Camila Régis Banhara
  • Emerson Rubens Mendonça Rodrigues
  • Yuri Plegge Ristow Wippel
  • Gabrielly Fernandes Costa
  • Bruna Machado Guim
  • Victor Vinicius Carvalho Paz
  • Paula Fernanda Amorim Kirche