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ABSTRACT 

Optimization problems are recurrent both in 

academia and in industry, in addition, the conditions 

of structural elements throughout their useful life 

when in use tend to acquire different damages 

arising from their natural deterioration or even due 

to the exceptional causes that may lead to these 

magnitudes. of different damages. In this sense, 

combining the identification of these damages 

through optimization processes in the continuous 

search for more appropriate means and 

consequently the improvement of the available 

information that characterizes the problems under 

study is essential, and constitutes one of the needs 

of current engineering, because of the evolutionary 

state structural elements when in use. In this work, 

it is proposed the adjustment of experimentally 

tested metallic beam structures, from a static 

analysis by the Finite Element Method (FEM) using 

ANSYS© to obtain displacements, as well as the 

use of inverse problems and an optimization 

method. From the adjusted models, the damage is 

simulated (reduction of the stiffness properties of 

the elements) in the structures, and, then, an 

optimization and damage identification technique is 

applied through the Differential Evolution Method 

(DE). The modeled and experimentally tested 

metallic beams presented mostly consistent results 

and the ED technique showed to have good 

potential for solving damage identification 

problems using Inverse Problems, managing to 

converge practically in all cases. 

 

Keywords: Optimization, Finite Element Method, Inverse 

Problems, Damage Identification, Differential Evolution. 

 

 

 

 

 

1 INTRODUCTION 

As there is a multitude of engineering works that are at an advanced age or even that was poorly 

designed and executed, starting to manifest various deteriorations arising from various situations, facts 

that demonstrate the importance of the areas of damage prediction. 
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This research seeks to continue the advances achieved in the areas of Damage Prognosis (DP) 

and Structural Health Monitoring (SHM) in the field of engineering, with optimal processes aimed at 

increasingly better solutions for the problems that arise. present. 

As stated by Yang et al. (2016) [1], optimization analyzes are crucially important in the design 

process to find a good balance between economy and safety in all areas of engineering. 

It is often clear that maintenance, when it occurs, is only corrective and is only carried out when 

the work is on the threshold of its limited state of use or collapse. The field of engineering that involves 

the conservation of existing structures through preventive interventions programmed throughout their 

service life only becomes evident when a structural accident occurs with relevant work, hence the 

importance of related themes that often depend on effective action management with adequate periodic 

technical follow-up. 

Optimization processes may have within their scope, for example, the intention of bringing the 

behavior of the numerical model closer to the experimental data, to make it more accurate, as is the 

case of this research. Damage models, on the other hand, can indicate variations in the stiffness and 

mass parameters of a structure. Destructive and non-destructive testing methods are used for 

identification/detection that helps detect failures or even changes in the properties of materials that 

make up certain structures. Numerical methods are also used, via the Finite Element Method (FEM) 

through calculations of natural frequency variations and vibration modes, before and after the onset of 

damage. Modal methods, derived from dynamic analysis, require a more refined study. 

Another determining point depends on the specification of the cost / objective function, defined 

as the relationship between the experimental and numerical results, they must efficiently drive the 

optimization process, having as main properties, for example, the experimental data points on the 

curve and all experimental curves should have equal opportunities to be optimized and different units 

and/or the number of curves in each sub-goal should not affect the overall performance of the fixture. 

These two criteria must be met without manually choosing the weighting factors. However, for some 

specific non-analytical problems this is very difficult in practice. Null values of experimental or 

numerical models also make the task difficult. 

The use of the Differential Evolution Method to detect damage in steel beams based on 

numerical and experimental results is proposed in this paper in the context of Structural Health 

Monitoring Methods. 

 

2 THEORETICAL FRAMEWORK 

2.1 OPTIMIZATION ALGORITHMS 

The idea of the optimizer is to make successive changes to the damage variables of the damaged 

model to find the damage to the tested elements. The process that involves this procedure is composed of 

the Inverse Problem that will plot the state that the structure maintains. 
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Its efficiency is achieved through the choice of an adequate objective function and the design 

variables. A general scheme of an optimization problem demonstrated by Gomes et. al. (2016) [2], can be 

seen in Figure 1 below. 

 

Figure 1  - Two-dimensional elastic structure where   - domain; 
u  - boundary with fixed displacements ( )u = 0 ; 

t  - 

boundary with applied tractions; 
d  - de - sign boundary ( )t = 0 ; u  - displacements; t  - tractions; 

ix   -  Cartesian coordinates 

 
  

 The optimization techniques used for the damage detection procedure essentially follow the 

measurement of the displacement from the damaged structure, the displacement calculation from the 

undamaged model, the verification of the convergence, and if this criterion is reached, the change to a 

new point, the calculation of the displacement, in the new point and the iteration from the convergence 

analysis. The advantages are the low sensitivity to noise compared to other techniques. It uses the 

static displacements and stiffness of each element since damage to structures is generally defined as a 

reduction in the stiffness of the element (Choi, 2002) [3]. 

In this context, from the structures modeled by the Finite Element Method (FEM) based on 

static experimental data (displacements), through inverse problems and optimization methods, the 

adjusted models will be simulated damage to the structures, testing their efficiency for this purpose 

and seeking the development of an ideal optimizer. 

 

2.2 DIFFERENTIAL EVOLUTION METHOD 

According to Storn and Price (1995) [4], proponents of the Differential Evolution method (DE 

– Differential Evolution), the classic version of this algorithm is very simple and presents some 

advantages, such as it has only three control parameters; it works with real domains, that is, it does not 

require that the design variables are encoded in binary numbers; it has good convergence properties 

and can be easily adapted for use in parallel computing. 

According to Sobrinho et. al (2020) [5], the DE method uses algorithms that are based on the 

population of individuals. Each individual represents a search point in the space of potential solutions 

to a given problem and imitates nature principles to create optimization procedures. 

The behavioral schemes of a Differential Evolution algorithm can be seen below in Figure 2. 
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Figure 2 – Behavior general schemes of DE algorithm (Price et al. 2005, p. 31 e 32) [6] 

 
(a) Initial population generation in 

DE algorithm 

 
(b) Disturbance generation between 

two solutions in DE algorithm 

 
(c) Mutation generation in DE 

algorithm 

 
(d) Selection generation in DE 

Algorithm 

 
(e) New vector mutating generation 

through a random disturbance in DE 

algorithm 

 
(f) New selection generation in DE 

Algorithm 

 

A Tabela 1 apresenta o esquema de ED para o comportamento das variáveis envolvidas. 
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Table 1. Behavior schemes of the variables involved in the Differential Evolution Method 

Process of forming a vector 

Mutant in the solution space 
Mutation schemes generated 

 

Mutation: 

𝑣𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 𝐹(𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺) 

 

 

Individual Reference: 𝑥𝑟1,𝐺 

↓ 

Mutation: 

𝑣𝑖,𝐺+1 = 𝑥𝑚𝑢𝑡𝑎𝑛𝑡 + 𝐹(𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺) 

 

 

Individual Reference: 𝑥𝑚𝑢𝑡𝑎𝑛𝑡  

↓ 

Mutation: 

𝑣𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 

+𝐹(𝑥𝑚𝑢𝑡𝑎𝑛𝑡 − 𝑥𝑟3,𝐺)  + 𝐹(𝑥𝑟2,𝐺 −

𝑥𝑟3,𝐺) 

 

 

Individual Reference: 𝑥𝑟1,𝐺 

 

 

  Being a population-based optimizer, it starts by solving the problem by sampling the objective 

function at several starting points. Starting points can be randomly chosen or not, depending on available 

information about the search space. Classical Differential Evolution has four main phases: initialization, 

mutation based on vector difference, crossover/recombination, and selection. The algorithm is controlled 

by three parameters: 

 

❖ I_NP is the size of i population and the number of competing solutions in a given 

generation G (I_itermax = maximum number of iterations or generations). It can also be called 

the number of vectors in the population. This population size is directly proportional to I_D, 

which is the number of parameters of the objective function, or even the variables involved, or 

even the dimensionality of the problem. Indicating to obtain I_NP the value of 10 times I_D; 

❖ F is the scale factor or weighting constant, typically between 0 and 2, that controls 

the differential mutation of the process (also called the step size of the differential evolution). It 

is the pass rate, which defines the probability of a test vector surviving; 

❖ F_CR is the crossover rate, specified in the interval between 0 and 1 (or also called 

the crossover probability constant). The higher this rate is, the greater the probability that the 

components of the candidate vector will be the same as the components of the mutant vector. 
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The general characteristics of the Differential Evolution method are: 

 

❖  Proposed by Rainer Storn and Kenneth Price in 1995 [4]; 

❖ Very popular in nonlinear optimization with continuous variables; 

❖ Basic search mechanism: differential mutation operator; 

❖ Considered a Stochastic Algorithm, although it is not inspired by a natural 

process; 

❖ Interesting computational qualities, such as: simplicity of implementation, 

robustness and efficiency, self-adaptation and versatility. 

 

 Consider the nonlinear optimization problem with continuous real variables, according to 

Equation (1): 

 

 

  

Initially, the problem is considered unrestricted, that is, without the constraint functions g(x) 

and h(x) and arg related to the function arguments. The notation is as follows: 

 

U_([a,b]): sampling with uniform distribution between a and b; 

N_([μ,σ]): sampling with normal distribution with mean μ and standard deviation σ; 

 

Let X_t={x_(t,i);i=1,…,I_NP} be a population of candidate solutions. Each individual is 

represented by a column vector, according to Equation (2): 

 

 

  

Where the third index indicates one among the “n” variables of the problem. The search 

mechanism of the Differential Evolution method that uses difference vectors, determined by the 

following points (see diagrams in Table 1): 

 

❖ Two individuals are randomly selected to create a difference vector; 

❖ This difference vector is added to a third individual, also randomly selected, 

producing a mutant solution; 

❖ The mutant solution is therefore the result of a disturbance in some individuals 

𝑥∗ = 𝑎𝑟𝑔𝑥
𝑚𝑖𝑛 f(x)   ,  Subject to: {

𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0
 (1) 

𝑥𝑡,𝑖 = [

𝑥𝑡,𝑖,1

𝑥𝑡,𝑖,2

𝑥𝑡,𝑖,𝑛

] (2) 
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of the population; 

❖ This perturbation is a randomly constructed difference vector. 

 

3 USE OF OPTIMIZATION TECHNIQUES AND STRUCTURAL DAMAGE DETECTION 

The optimization techniques used for the damage detection procedure essentially follow the 

measurement of the displacement from the damaged structure, the displacement calculation from the 

undamaged model, the verification of the convergence, and if this criterion is reached, the change to a 

new point, the calculation of the displacement, in the new point and the iteration from the convergence 

analysis. 

The advantages are the low sensitivity to noise compared to other techniques. It uses the static 

displacements and stiffness of each element since damage to structures is generally defined as a 

reduction in the stiffness of the element (Choi, 2002) [3]. Following Equation (3) we observe: 

 

 

  

Where: 

β: ratio between the effective stiffness of the ith element. 

 

Using both the static displacements acquired from the finite element analysis (FEM) of the 

intact structure and the displacements corresponding to the damaged structure, the optimization 

function is obtained, according to Equation (4) below. 

 

𝐹 = ∑ |
𝐷𝑖

𝑀

𝐷𝑖
𝐶 − 1|

𝑛𝑛

𝑖=1

 (4) 

 

 On what: 

𝐷𝑖
𝑀 :  displacement measured at the ith node; 

𝐷𝑖
𝐶 :  calculated displacement at the ith node; 

𝑛𝑛 :  number of nodes in the system. 

 

In Sobrinho et. al (2020) [5], for a beam element, through the following Equation (4), the 

stiffness matrix establishes how the physical and material properties are stored and also how each 

beam is modified to incorporate the variable damage. 

𝑋 = (𝛽1, 𝛽2, … … . … 𝛽𝑛𝑙, ) (3) 
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where [di] is the variable design vector and, the variable design vectors “di” shown in Equation 

(4), could assume values between 0 (intact element) and 1 (damaged element). 

 

3.1 THE GENERAL BEHAVIOR OF THE DIFFERENTIAL EVOLUTION METHOD 

Santos (2009) [7] presents Equation (5) in the analytical form of a function of 2 variables with 

some minimum points, where a 3-D graphical analysis of the same can be obtained, through the Peak 

Functions (Peaks Functions – MATLAB© R2014a [8]). Figure 3 (a) below shows the panorama of 

the Peak Functions, as well as the same one, through the Peak Functions (MATLAB© R2014a [8]). 

Figure 3 (b) shows the detail of the perception of the 3 minima of the function. 

 

 

 

 

 

Figure 3 – Function surface 3-D 

 

𝑧 = 3(1 − 𝑥)2𝑒−(𝑥2) − (𝑦 + 1)2 − 10 (
𝑥

5
− 𝑥3 − 𝑦5) 𝑒(−𝑥2−𝑦2)

−
1

3
𝑒(−(𝑥+1)2−𝑦2) 

(5) 
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3.2 BEHAVIOR OF THE DIFFERENTIAL EVOLUTION METHOD IN THE SEARCH FOR A 

GLOBAL MINIMUM OF A FUNCTION 

First, to understand the behavior of the Differential Evolution Method in the search for a global 

minimum of a function, one must observe the initial generation that gives rise to this process, as well 

as the updates made to each new generation. 

In this sense, Figure 4 below, shows the verification of a random distribution of the points by 

the defined design space, where the simulation of the same is identified by reducing the sample space 

of the Peak Function until the second generation (maximum number of iterations or generations: 

I_itermax=2). In the graphical analysis of the contour and profile of the Peak Function, it is observed 

that the distribution of red dots represents the locations of individuals in the population, in which the 

area in red observed in the graphs is the region of the maximum peak of the function. 

 

Figure 4 – 2nd Generation: Peaks Function graphical representation and the random distribution verification of points by defined 

design space and sample space reduction 

 
 

 Figure 5, where the graphic analysis is performed, represents the minimum value of the 

objective function, through its update at each new generation, as well as demonstrating the value of 

the best individual of the Peak Function. 

 

Figure 5 – 2nd Generation: Minimum value graphical representation of the objective function and each generation behavior 

 
 

 Figure 6 already represents the distribution of the vector difference through the vector 

difference between individuals, implying the following relationship: the greater the distance between 

individuals, the greater the vector difference, and consequently the greater the distance between 

individuals in the design space. 
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Figure 6 – 2nd Generation: Difference vector distribution graphical representation between individuals in each generation project 

space 

 
 

 With the decrease of this vector difference in the distance between the individuals, it is stated 

that they are converging to a region with a minimum point in common. The minimization of the vector 

difference, that is, this tending to zero, shows that the method reached a minimum point of the function. 

There is also the random distribution of individuals in the search space to facilitate the sweep 

of the design space to reach regions with minimum points, this is also one of the characteristics of the 

Differential Evolution Method. 

In Figure 7, in the 5th and 7th generation, it is already observed that in the vicinity of the dark 

blue region, there is a small convergence of individuals, as well as some other individuals trying to 

search other regions looking for another better point where the global minimum is located off the Peak 

Function. 

 

Figure 7 – Generation evolution graphical representation where the region points tend to converge and the global minimum 

function is found 

 
(a) 5th Generation 

 
(b) 7th Generation 

 

 From there, in Figure 8 (a), the path to the region where the global minimum is located is 

found, initiating a local search for a new position that generates the minimum value of the objective 

function, that is, the other individuals start a migratory process to the region that presents the lowest 

value of the objective function up to the 10th Generation shown, as shown in Figure 8 (b). There is a 
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conversion to the region close to zero, confirming the convergence process, where the vectors are 

increasingly close to each other so that the minimum point approaches its path and the beginning of 

stabilization. 

 

Figure 8 – Graphical representation of individuals when they start a migration process to the region that has the lowest value of 

the objective function 

 
(a) 8th Generation 

 
(b) 10th Generation 

 

 Figure 9 illustrates the positioning of individuals in the design space, where there is a single 

red dot in the center of the dark blue region, confirming the path for convergence of the optimizer 

population, through the minimum value of the Objective Function. 

 

Figure 9 – 15th Generation: Graphical representation of the Peaks Function and its consequent convergence to the region that 

has a minimum point 
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 Finally, Figure 10 illustrates the final positioning of the individuals in the design space, where 

there is a single point of clusters of red individuals in the center of the dark blue region, confirming 

the path for the convergence of the optimizer population, through the value minimum of the Objective 

Function. 

 

Figure 10 – 25th Generation: Graphical representation of the Peaks Function and its final consequent convergence to the region 

that has a minimum point 

 

 

4 ANALYZED MODELS AND RESULTS 

Studies were sought with verifications essentially arising from experiments in metallic beams (I-

profile), made of MR-250 steel with total lengths of 6.00 meters, in bias-supported condition, subjected to 

different load stages applied in mid-span and also in other points, as well as the damages and their different 

positions throughout the studies carried out. These cases are listed in Silva (2015) [9] in his doctoral thesis. 

The damages were induced in the beams through transverse notches to the longitudinal axis of the 

beams (Figure 11) and numerically they were simulated by eliminating mesh elements in finite elements 

(Figure 12). 

 

 
Figure 11 – Real induced damage (Silva, 2015) [9] 

 
Figure 12 – Numerically simulated damage (Silva, 

2015) [9] 
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 The geometric and material properties of the beams in the experimental analyses, as well as the 

damage conditions to be verified, can be seen below in Table 2. 

 

Table 2: Beam cases, geometric, mass, and mechanical properties 

 

American I Profile – Steel: 102.0 x 11.4 

h 

(cm) 

h0 

(cm) 

tf 

(cm) 

t0 

(cm) 

c 

(cm) 

b 

(cm) 

Area 

(cm2) 

Ix 

(cm4) 

E 

(MPa) 

10.16 8.68 0.74 0.483 1.59 6.76 14.50 252 200 

Length (m) 
Wx 

(cm³) 

ix 

(cm) 

Iy 

(cm4) 

Wy 

(cm³) 

iy 

(cm) 

Zx 

(cm³) 

Zy 

(cm³) 

fy* 

(MPa) 

6.00 49.70 4.17 31.70 9.37 1.48 56.220 17.414 0.25 

 *Characteristic value 
 

 

 

   

 

 

Beams 

(Cases 1, 2 e 

3) 

Loads 

(kN) 

Damage 

(cm) 
Damage Position 

Case 1: 

VD1-2 
3kN  2cm 

1.5m from the left 

support 

Case 2: 

VD1-4 
3kN  >4cm 

1.5m from the left 

support 

Case 3: 

VD2-2 
3kN  

Both Sides 

are 2cm 

1.8m and 4.2m 

from the left 

support 
 

 

 The load stages used for evaluation with the optimization methods refer to those applied only in the 

load stage immediately before the maximum load (according to Silva, 2015 [9]: 4373 N). The damage was 

induced through transverse notches to the longitudinal axis of the beams, and the adoption of these open 

vertical cracks is caused by different requests, such as behaviors found in buildings with metallic structural 

elements and special works of art. In general terms, experimental models were sought with the maximum 

similarity with current construction standards for future practical contributions in the various systems built 

and formed by different structural elements. 

The beams of the experimental tests were divided into 16 elements of 37.5 cm in length each, with 

17 nodes equally spaced along the beam. 

The objective functions produced by the accumulation of the quadratic differences of the intact and 

damaged responses used can be observed in Equation (6) below, which includes: 

 

where ij
mY are the static displacements measured (intact structure), ij

aY  are the static displacements 

obtained analytically (damaged structure), “i” is the degree of freedom, and “j” is the static shipment 

condition in a particular case. 

( )
16

2

1

ij ij

m a

i

F Y Y
=

= −  (6) 
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The damage will be simulated to be identified by the DE, through intact and damaged responses of 

structures. The optimizer will make successive changes to the damage variables of the damaged model so 

that damage is found in all tested elements. The process that involves this procedure is composed of the 

Inverse Problem that will plot the state that the structure maintains. 

The results of applying the Differential Evolution Method to different situations of beams with 

constant numbers of elements will be presented (called within the method the number of parameters of the 

objective function, even the variables involved, or even dimensionality). The static displacements were 

used as numerical and experimental results. 

The measured data were simulated synthetically using the finite element analytical model of the 

structure with certain damaged elements (reduced stiffness) as well as the experimental models. 

In general terms, the results to be obtained for each type of beam model and their respective load 

steps will take into account the displacements of the intact and damaged structure, with the insertion of 

damage in any element of the structure and the consequent analysis of an objective function involving these 

obtained results and finally being worked on in the optimization method. 

The information from the synthetic (numerical) experimental data is used in terminology related to 

inverse problems since the structure response was derived from the intact and damaged responses. The 

damage assessment through experimental data brings a closer approximation of the real behavior of the 

structures considering that they can be produced by a measuring device, despite the practical limitations to 

obtain a lot of information. 

 

5.1 STATIC NUMERICAL AND EXPERIMENTAL ANALYSIS: INTACT SUPPORTED 

METALLIC BEAM 

In this case, now an intact slat-supported metallic beam (VR), with punctual loading in the middle 

of the span, as represented in Figure 13, from the work by Silva (2015). 

 

Figure 13 – Intact steel beam (VR) for static analysis (Silva, 2015 [9]) 

 
VR Beam: Intact Beam applied load in the middle of the span 
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The intact condition will be used as a parameter for checking the static damaged conditions of the 

beams in case 1 (VD1-2), case 2 (VD1-4) and case 3 (VD2-2), all with a loading order of around 3 kN. 

 

5.1.1 Case 1 - Static Numerical and Experimental Analysis: Supported Metallic Beam (VD1-2) 

The damaged simply supported metallic beam (Case 1: VD1-2), with punctual loading in the middle 

of the span, can be seen in Figure 14 below. 

 

Figure 14 – Damaged steel beam: Case 1 VD1-2 (Silva, 2015 [9]) 

 

Damaged Beam Case 1 (VD1-2): Damage location at 1.5m from the left 

support 

Damage of 2cm length 

 

 

 The intact and damaged graphic analyzes corresponding to the displacements for the beam in case 

1, shown in Figure 15, where: the x-axis (abscissas) corresponds to the length of the beam (6m) and the y-

axis (ordinates) corresponds to the displacements generated by the application of the loads, in this case, 

loads of approximately 3 kN and little are used. 

 

Figure 15 – Intact and damaged graphical analysis corresponding to the displacements for the beam of case 1 (load 

approximately 3 kN) 
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The simulations proposed in this approach concern the results of the values obtained in the 

essentially experimental analysis used to identify the damaged elements in the structure. Due to the 

reasonable computational processing time, uses of 100 iterations were defined for this experimental 

analysis. In this analysis, only the intact and damaged static displacement values of the beam elements were 

considered. Figure 16 shows the result of the problem solution. 

 

Figure 16 – Damaged identification VR ↔ VD1-2 (100 iterations): Beam load Case 1 (case of damage from left support – 

1,5m=L/4) 

 
 

5.1.2 Case 2 - Static Numerical and Experimental Analysis: Supported Metallic Beam (VD1-4) 

 On the other hand, the damaged slatted steel beam (Case 2: VD1-4), with punctual loading in the 

middle of the span, and damaged configuration as represented in Figure 17, from the work by Silva (2015) 

[9]. 

 

Figure 17 – Damaged steel beam: Case 2 VD1-4 (Silva, 2015 [9]) 

 

Damaged Beam Case 2 (VD1-4): Damage location at 1.5m from the left support 

Damage of 4cm length 
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 The intact and damaged graphic analyzes corresponding to the displacements for the beam in case 

2, shown in Figure 18, where: the x-axis (abscissas) corresponds to the length of the beam (6m) and the y-

axis (ordinates) corresponds to the displacements generated by the application of the loads, in this case, 

loads of approximately 3 kN and little are used. 

 

Figure 18 – Intact and damaged graphical analysis corresponding to the displacements for the beam of case 2 (load 

approximately 3 kN) 

 
 

 The simulations proposed in this approach concern the results of the values obtained in the 

essentially experimental analysis used to identify the damaged elements in the structure. Due to the 

reasonable computational processing time, uses of 100 iterations were defined for this experimental 

analysis. In this analysis, only the intact and damaged static displacement values of the beam elements were 

considered. Figure 19 shows the result of the problem solution. 

 

Figure 19 – Damaged identification VR ↔ VD1-4 (100 iterations): Beam load approximately 3 kN Case 2 (case of damage 

from left support – 1,5m=L/4) 
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5.1.3 Case 3 - Static Numerical and Experimental Analysis: Supported Metallic Beam (VD2-2) 

The damaged slung-supported metallic beam (Case 3: VD2-2), from the work by Silva (2015) 

[9], with damaged configuration and punctual loading in the middle of the span, can be seen in Figure 

20 below. 

 

Figure 20 – Damaged steel beam: Case 3 VD2-2 (Silva, 2015 [9]) 

 
Damaged Beam Case 3 (VD2-2): Damage location at 1.8m and 4.2m from the left support 

Damages of 2cm length 

 
 

 

 The intact and damaged graphic analyzes corresponding to the displacements for the beam in case 

3, shown in Figure 21, where: the x-axis (abscissas) corresponds to the length of the beam (6 m) and the y-

axis (ordinates) corresponds to the displacements generated by the application of loads, in this case, loads 

of approximately. 

 

Figure 21 – Intact and damaged graphical analysis corresponding to the displacements for the beam of case 3 (load 

approximately 3 kN) 

 
 

 The simulations proposed in this approach concern the results of the values obtained in the 

essentially experimental analysis used to identify the damaged elements in the structure. Due to the 

reasonable computational processing time, uses of 100 iterations were defined for this experimental 

analysis. In this analysis, only the intact and damaged static displacement values of the beam elements 

were considered. Figure 22 shows the result of the problem solution. 
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Figure 22 – Damaged identification VR ↔ VD2-2 (100 iterations): Beam load approximately 3 kN Case 3 (case of damage 

from left support – 1.8m and 4.2m) 

 
 

6 FINAL CONSIDERATIONS 

The structural responses of beams, under different loading conditions, through their static 

displacements, were used to identify damage. Since the damage is considered through the alteration 

(decreasing) of the stiffness properties of these elements. These constitute studies originating from 

Inverse Problem Methods or Systems Identification Methods. 

The summary of the results obtained can be seen in Table 3 below. 

 

Table 3 - Summary: Steel Beams Cases 1, 2 and 3 

Item Beam (Cases) 
Loads 

(kN) 
Analysis 

Damage Cases 

from left support 
Iterations Damaged Elements Positions 

Damage 

% 

Objective Function 

Minimum 

VD1-2 Double 
Supported 

Beams 
(Cases 1, 2, and 3) 

3kN  

Experim. 

from 1.5m = (L/4) 100ª 4 2%  47.1998 

VD1-4 3kN  from 1.5m = (L/4) 100ª 4 4%  11.9614 

VD2-2 3kN  from 1.8m and 4.2 m 100ª 5 and 12 2%  357.8554 

 

 With these minimum values of the objective functions found in the hundredth iteration and with 

the damage values of the elements following the proposed problem, finding damage of approximately 2% 

in element 4 for the analysis with the beam VD1-2 and 4% in element 4 for the analyzes with beam VD1-

4, and some disturbances for the other elements. 

As for the minimum values of the objective functions found in the hundredth iteration, several 

damages of 2% in elements 5 and 12 for beam VD2-2, with the damage values of the elements following 

the proposed problem, in addition to some small disturbances for the other elements, mainly near the 

supports. 
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In the vicinity of the damage points, there were some distortions, probably because of the 

disturbance caused, where, for a more realistic adaptation to the model, a greater number of iterations could 

be used. 

The damage identification analyses in this example was restricted to the displacements obtained in 

the intact and damaged experimental analyses, but as previously reported, a greater number of iterations 

were used again, which allowed a decrease in the generated residues, even where there were large 

differences in displacements, presence of punctual loads, proximities of the supports or even in the 

proximities of the damaged regions, despite this the damage values of the elements follow under the 

proposed problem. It is emphasized that increasing the number of iterations, in some cases, helps to solve 

the local minimum approximation problem. 

With the analysis of these beams, it can also be stated that a greater number of displacement 

information would also help in the work of the optimizer. Even so, the tool met the ability to locate and 

quantify damage in any element of the structures under study. 
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