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ABSTRACT 
Mass movements are natural phenomena that frequently occur on slopes, especially in 

mountainous and densely populated regions, exhibiting destructive behaviors, with the loss 

of life and destruction of material goods. Therefore, the in-depth study of slope stability is 

extremely important in geotechnical engineering. The intricate nature of these phenomena 

makes it extremely difficult to predict them and to apply conventional models and analyses. 

The Mathematical Chaos Theory emerges as a promising tool to understand the 

supposedly unpredictable and sometimes illogical behavior of certain physical phenomena, 

characterized by the interaction of many agents, in a cooperative process, in which the 

behavior of the whole is not reduced to that of its constituent parts. This leads to marked 

nonlinearities and sensitivity to initial conditions, which makes the search for (closed) 

mathematical analytical solutions difficult, if not impossible. This work aims to deepen the 

application of Chaos Theory to mass movements on rock slopes of mixed surfaces 

(concave and convex), aiming at the analysis of the stability and fall of blocks of irregular 

geometry, their dynamic evolution, sensitivity to initial conditions, among other related 

aspects, in the wake of the research inaugurated by Ignácio (2019). The results of this 

research showed that the relative arrangement of the concave and convex regions in the 

constitution of the profile of natural slopes has a marked influence on the response of the 

rock blocks located downhill. In more detail, convex regions close to the release of the 

blocks (top of the slope) give rise to evolution dynamics adequately described by non-

Gaussian statistics (extended q-exponentials). On the other hand, in the situation where 

those convex regions are closer to the base level of the natural slopes, their dynamics are 

more appropriately described by a statistical distribution constituted by the linear 

combination of the Gaussian and extended q-exponential distributions. 
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INTRODUCTION 

Slope stability on rocky slopes is an extremely important topic in geotechnical 

engineering, since the occurrence of mass movements, such as falls and block rolling, has 

an enormous destructive potential. Due to the complexity and unpredictability of these 

phenomena, their analysis becomes quite difficult, which has been challenging traditional 

approaches, however, their understanding is fundamental in mitigating the associated risks 

and adopting security measures. 

Rock masses are made up of intact rock material and discontinuity surfaces, often 

presenting high heterogeneity. Its behavior is a function of a series of factors – resistance 

and deformability of the rock matrix and discontinuities, weathered behavior of the material, 

etc. – which makes it difficult to identify regularities and reiterations in its movements, which 

are often unpredictable and difficult to identify by traditional methods. It is in this context that 

Chaos Theory emerges as a promising tool for investigating and understanding these 

complex phenomena. 

This mathematical theory deals with physical phenomena, characterized by the 

interaction of several agents, in a common process of cooperation, in which the behavior of 

the whole is not reduced to the behavior of its constituent parts. Accentuated nonlinearities, 

extreme sensitivity to initial conditions, among other factors, make the phenomenon difficult 

to analyze, in which the search for mathematical analytical solutions becomes difficult, if not 

impossible. 

Applied to geotechnical phenomena, especially those related to the instability of 

natural slopes in soil and rock, the theory has produced promising results, which are 

extremely important in the understanding and mitigation of these complex natural 

phenomena.  

This research aims to deepen the application of chaos theory to mass movements on 

rock slopes with concave and convex geometric profiles, analyzing the shape of the slopes 

and the different types of falls and bearings of irregular rock blocks that may occur, as well 

as their dynamic evolution, sensitivity to initial conditions, among other aspects of interest,  

in the wake of the line of research inaugurated by Ignácio (2019).  

Ignácio (2019) observed a huge variability of trajectory-range probability distributions 

for different geometries of concave and convex slopes, concluding that the results obtained 

in convex profiles provide Gaussian trajectory-range probability distributions, while in 

concave sections, with or without smooth convex sections, non-Gaussian probability 

distributions, such as extended q-exponentials, present a better fit of the points than those 

of the Gaussian probability distributions. 
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Thus, this work aims to contribute to a deeper knowledge of these complex 

phenomena, resulting in more effective strategies for prevention and mitigation of 

geotechnical risks. 

 

LITERATURE REVIEW 

BASIC CONCEPTS OF FALLING ROCK BLOCKS AND CHAOS THEORY 

Rock slopes are made up of intact rock and discontinuities, these geological features 

are described as faults, joints, beddling planes and fissures. The overall strength of a 

massif depends on the strength of the rock and the characteristics of these discontinuities, 

whose relative participation in the overall stability is still difficult to quantify (AZEVEDO and 

MARQUES, 2002). 

From a geotechnical point of view, the studies allow a greater understanding of the 

triggering mechanisms of such movements, whether they are landslides, falling blocks, 

among others, which are very common on slopes in rocky and/or earthy materials 

(GUIDICINI and NIEBLE, 2019). 

Falling blocks, in particular, are characterized by rapid and often unpredictable 

movements, in which rock fragments break off steep slopes, moving in free fall and 

sometimes rolling or sliding. In general, these events occur suddenly, without previous signs 

of movement, and reach high speeds, developing high kinetic energies during the 

displacement, which makes them especially dangerous and difficult to anticipate or control 

(IGNACIO, 2019). 

This unpredictability leads to the need for models that contemplate non-linear 

dynamic behaviors that are sensitive to initial conditions, characteristics often observed in 

chaotic systems. (MENEZES FILHO, 2003). 

In the context of chaos theory, nonlinear dynamical systems exhibit extreme 

sensitivity to initial conditions. This characteristic implies that small variations in the initial 

state of the system can generate significantly different trajectories over time. This sensitivity 

is related to the presence of strange attractors in phase space, structures that define the 

evolution of the system in an apparently disordered way, but which still follow specific 

mathematical patterns (MANDELBROT, 1977). 

To describe the degree of internal disorder of such systems, the concept of entropy is 

applied, understood as a macroscopic indicator of the complexity and dynamic behavior 

resulting from microscopic interactions. In the case of extensive systems with short-range 

interactions, Boltzmann-Gibbs entropy is widely used. This entropy is additive and reaches 
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its maximum value in the thermal equilibrium of the system. The probability distribution that 

maximizes it is the Gaussian (PEDRON, 1999), given by Equation (1). 

  
𝑝(𝑥) = 𝑎 [𝑒

[−(
𝑥−𝑐
𝑏

)
2
]
] 

 

(1) 

where a, b, and c are adjustment parameters. 

However, many physical systems, especially those with long-range interactions or 

complex spatial and temporal structures, do not fit this classical formulation. For these 

cases, entropy is not an additive property, and the conventional approach is no longer valid 

(MENEZES FILHO, 2003). 

Tsallis (1988) then proposed a generalization of Boltzmann-Gibbs entropy, allowing a 

new possibility of dealing with anomalous, non-additive systems, said to be weakly chaotic 

or complex (LIMA, 2021). This can be written as shown in Equation (2), where , , , and are 

parameters of fit.𝑎′𝑏′𝑐′𝑞𝛿 

 

𝑝(𝑥) = 𝑎′ [1 − (1 − 𝑞) (
𝑥′ − 𝑐′

𝑏′
)

2
𝛿

]

1
1−𝑞

 

(2) 

This distribution has been successfully applied in the statistical description of the 

phenomenon of falling rock blocks, especially those that reach the foot of the natural slopes 

down the slope (IGNÁCIO, 2019; RIBEIRO, 2020; ARAÚJO, 2021). 

 

METHOD OF ANALYSIS 

The simulations were carried out based on case C2 of Ignácio's research (2019). 

The geometry of the slope was systematically modified, varying the position of the convex 

and concave surfaces along the slope, in order to analyze the influence of these variations 

on the behavior of falling blocks. 

The rocky slope was entirely modeled by facoidal gneiss, and the configurations of 

the blocks were also provided by Ignacio (2019), and the use of Large Irregular Blocks 

(BIG) was defined in all analyses. 

The results of the distribution of blocks at each point of the surface are obtained by 

the software by means of histogram and the data can be exported in spreadsheets.  

Ferreira's master's thesis (2024) summarizes the studies developed by 

PGECIV/UERJ researchers, focused on the analysis of the fall of rock blocks, highlighting 

the effectiveness of numerical simulations and probabilistic analyses based on the theory of 
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chaotic and complex systems. The results proved the usefulness of this approach to 

understand and predict this phenomenon. 

The parameters of the phasoidal gneiss constituting the slope and the blocks were 

defined in Menezes Filho (1993). In more detail, laboratory uniaxial axisymmetric 

compression tests were performed on several samples of phachoidal gneiss, with 

weathering levels ranging from healthy to highly altered. Resistance and deformability 

parameters were determined and used for a better characterization of the rock under study. 

The data related to the normal and tangential restitution coefficients, as well as those 

related to dynamic and rolling frictions, were those used by Ignácio (2019), as shown in 

Table 1. 

 

Table 1- Parameters for the geotechnical modeling of facoidal gneiss slopes (Adapted from Ignácio, 2019) 

Rock material 
Normal Refund 
Coefficient (CRn) 

Tangential Refund 
Coefficient (CRt) 

Dynamic 
friction 

Rolling 
friction 

Phasoidal 
gneiss 

0,35 0,85 0,5 0,15 

 

Based on the information provided by Ignácio (2019), the BIG block with irregular 

geometry was chosen, with the following characteristics: mass of 7,408.8 kg, specific weight 

of 27 kN/m³ and approximate size of 1.40 meters. 

The choice of the C2 profile was due to its better suitability for the purposes of the 

research, i.e., its refined geometry and convex and concave surfaces closer to reality. 

 

 
Figure 1 Slope studied in case C2 by Ignácio (2019) 
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In order to investigate the mutual influence of the convex and concave geometries on 

the profile of the rocky slope, it was decided to monitor the most prominent point in the 

convex part, called Y (Figure 2), located at 30.75 meters above the base of the model. 

From now on, this surface will be named as Base Scenario. 

 

 
Figure 2 Base Scenario: Slope Defined 

 

Monitoring this point served to change the location of the convex part along the slope 

surface. More precisely, the variation of point Y occurred along a straight line with an 

average slope of the slope surface, with an angle of 48°. This line was divided every meter, 

with the 19th distribution corresponding to point Y related to the base configuration. The 

other scenarios were modeled according to the division adopted and presented later.  

The configurations adopted in the present research were similar to those used by 

Ignácio (2019), and are presented in Table 2. 

 

Table 2 - Project Configuration 

Project Settings 

General Settings 

Engine Rigid Body 

Units Metric (m, kg, kJ) 

Rock throw mode 
Number of rocks 
controlled by seeder 

Use tangential CRSP damping Yes 

Engine 
Conditions 

Maximum steps per rock 20000 

Normal velocity cutoff (m/s) 0.1 

Stopped velocity cutoff (m/s) 0.1 

Maximum timestep(s) 0.01 

Switch velocity (m/s) -1e-09 

Random Number 
Generation 

Sampling method Monte-Carlo 

Material Properties Sampling Per segment 

Random seed 
Pseudo-random seed: 
12345234 

 

The unstable blocks were considered as rigid bodies and, in the probability 

configuration, it was decided to use the Monte Carlo sampling method, due to its better 

adaptation for the estimation of the results of complex functions, dealing with probabilistic.  
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In the Mechanism Conditions tab, the speed parameters were used as suggested by 

the RockFall2 software, version 8.023, made available in October 2023 by Rocscience. 

Although 100,000 blocks were launched, as adopted in previous research, many 

simulations resulted in only 20,000 effective launches, which led to less robust statistics.  

The launching point of the blocks, called seeders, was inserted in the highest place 

on the slope. 

For data treatment, the Grapher  software (version 16.2.354, Golden Software, May 

2020) was used to generate 2D graphs. The experimental data were adjusted using the 

Gaussian and extended q-exponential probability distributions, represented by Equations 

(1) and (2), respectively, whose quality of adjustments was evaluated by the correlation 

coefficient R. 

 

RESULTS 

PROBABILISTIC DISTRIBUTIONS 

Two main probability distributions were used in the treatment of experimental data 

related to the position and number of blocks located at the foot of the slopes. The first was 

the Gaussian distribution, used for the analysis of strongly chaotic systems, with 

exponentially rapid dispersion between initially very close trajectories. The second was 

extended q-exponential, applied to weakly chaotic or complex systems, with slower 

dispersion between initially close trajectories.   

The Gaussian and extended q-exponential distribution will be represented by the 

colors blue and red, respectively. The analyzed scenarios were named as follows: Base 

Scenario (corresponding to Case C2 mentioned above), Scenario 01, Scenario 02, 

Scenario 03, Scenario 04 and Scenario 05. 

 

Base case 

Represented in Ignácio's thesis (2019) as case C2, it gave rise to the other scenarios 

studied in this research.  

Profile data: 

• Observation point: the most prominent point in the convex section, previously named 

Y, is located 30.76 meters from the base of the model 

• Cross section: 45 meters high  

• Length: 100 meters 

 

Results shown in Figure 3. 
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Figure 3 Graph p(x) versus x and Graph log(p(x)) versus x - Base Scenario 

 

Scenario 01 

In this case, the convex surface is located adjacent to the top and the concave 

surface predominates in the rest of the slope. 

Profile data: 

• Observation point: the most prominent point in the convex section, previously named 

Y, is located 34.46 meters from the base of the model 

• Cross section: 45 meters high  

• Length: 100 meters 

Results shown in Figure 4. 
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Figure 4 Graph p(x) versus x and Graph log(p(x)) versus x - Scenario 01 

 

Scenario 02 

In this case, the convex surface is close to the top of the slope, and the concave 

surface predominates in the rest of the slope. 

Profile data: 

• Observation point: the most prominent point in the convex section, previously named 

Y, is located 32.61 meters from the base of the model 

• Cross section: 45 meters high  

• Length: 100 meters 

Results presented in Figure 5. 
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Figure 5 Graph p(x) versus x and Graph log(p(x)) versus x - Scenario 02 

 

Scenario 03 

In this case, the convex surface is located approximately halfway up the slope, and 

the concave surface predominates above the Y point and near the foot of the slope. 

Profile data: 

• Observation point: the most protruding point in the convex section, previously named 

Y, is located 23.37 meters from the base of the model 

• Cross section: 45 meters high  

• Length: 100 meters 

Results presented in Figure 6. 
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Figure 6 Graph p(x) versus x and Graph log(p(x)) versus x - Scenario 03 

 

Scenario 04 

In this case, the convex surface is located near the base of the slope and the 

concave surface predominates above the Y point. 

Profile data: 

• Observation point: the most protruding point in the convex section, previously named 

Y, is located 21.15 meters from the base of the model 

• Cross section: 45 meters high  

• Length: 100 meters 

Results presented in Figure 7. 
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Figure 7 Graph p(x) versus x and Graph log(p(x)) versus x - Scenario 04 

 

Scenario 05 

In this case, the convex surface is located adjacent to the base of the slope and the 

concave surface predominates above the Y point. 

Profile data: 

• Observation point: the most prominent point in the convex section, previously named 

Y, is located 10.80 meters from the base of the model 

• Cross section: 45 meters high  

• Length: 100 meters 

Results presented in Figure 8. 
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Figure 8 Graph p(x) versus x and Graph log(p(x)) versus x - Scenario 05 

 

Considerations 

Based on the graphs presented in the previous item, the following parameters for the 

adjustment of the Gaussian and extended q-exponential distributions and the correlation 

coefficients were obtained (Table 3). It should be noted that the adjustment parameters are 

presented in Ferreira (2024). 

 

Table 3 Results obtained from the parameters used in the distributions 

Scenario 

Extended Q-Exponential Gaussian 

Parameters Values found Parameters 
Values 
found 

Base 

q 0,8352076   

δ 0,9501157   

Correlation 
coefficient 

0,9976617 
Correlation 
coefficient 

0,9961701 

 q 0,4733892   

01 δ 1,3069695   

 
Correlation 
coefficient 

0,9912835 
Correlation 
coefficient 

0,9898382 

 q 0,5817001   

02 δ 0,9778995   

 
Correlation 
coefficient 

0,9929233 
Correlation 
coefficient 

0,9876744 

 q 0,5620416   

03 δ 0,9993509   

 
Correlation 
coefficient 

0,9818190 
Correlation 
coefficient 

0,9777841 

 q 0,59   

04 δ 1,11   

 
Correlation 
coefficient 

0,998707 
Correlation 
coefficient 

0,997230 
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Scenario 

Extended Q-Exponential Gaussian 

Parameters Values found Parameters 
Values 
found 

 q 1,99   

05 δ 0,81   

 
Correlation 
coefficient 

0,9984824 
Correlation 
coefficient 

0,9928663 

 

The observation of the graphs and the parameters resulting from the adjustment of 

the curves suggest that: 

In the base scenario, the probability distribution that best suited the experimental 

data was the extended q-exponential - especially in the tail region (Graph log(p(x)) versus x 

in Figure 3) - with a correlation coefficient of 0.9976617, when compared to the slightly 

lower value of 0.9961701, referring to the Gaussian distribution. The parameters q and δ 

showed values of 0.8352076 and 0.9501157, respectively, which indicates their proximity to 

the value 1, especially the parameter δ, constituting a distribution close to the q-Gaussian, 

whose statistics are quite common in weakly chaotic or complex systems. 

In scenario 01, it is observed again that the extended q-exponential presented the 

best fit - especially in the tail region (Graph log(p(x)) versus x in Figure 4) - with a 

correlation coefficient of 0.9912835, slightly higher when compared to the value 0.9898382, 

referring to the Gaussian distribution. The parameters q and δ showed values of 0.4733892 

and 1.3069695, respectively, suggesting a weakly chaotic behavior in the dynamics of 

destabilization of the rock blocks. 

In scenario 02, the same trend follows: the extended q-exponential distribution 

showed better adherence to the data, especially in the tail region (Graph log(p(x)) versus x 

in Figure 5) - with a correlation coefficient of 0.9929233, higher than that of the Gaussian 

(0.9876744). The values of q = 0.5817001 and δ = 0.9778995 also point to weakly chaotic 

behavior, with the parameter δ close to unity — a recurring feature in the statistics of 

complex systems. 

In Scenario 03, although the extended q-exponential continues to be the distribution 

that best fits the data (coefficient of 0.9818190, against 0.9777841 of the Gaussian), the 

adjustment of the tail region is only approximate (Graph log(p(x)) versus x of Figure 6). The 

parameters q = 0.5620416 and δ = 0.9993509 indicate a weakly chaotic behavior, with δ 

very close to 1. This strong approximation may be the cause of the imperfect fit in the tail, 

an issue that will be taken up again in item 3.6, which deals with the extended and 

Gaussian q-exponential joint distribution. 

Scenario 04 presents a similar behavior to the previous one: the extended q-

exponential fits better to the experimental data, especially in the tail (Graph log(p(x)) versus 
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x in Figure 7), with a correlation coefficient of 0.998707, higher than the 0.997230 of the 

Gaussian distribution. The parameters q = 0.59 and δ = 1.11 indicate, again, a weakly 

chaotic behavior. The proximity of the δ parameter to the unit reinforces the observation of 

an approximate adjustment at the tail. 

Finally, in Scenario 05, the same trend observed in Scenarios 03 and 04 is verified: 

the extended q-exponential adjusts better to the experimental data (coefficient of 

0.9984824, compared to 0.9928663 of the Gaussian), but the adjustment in the tail region 

remains only approximate (Graph log(p(x)) versus x in Figure 8). The values of the 

parameters q = 1.99 and δ = 0.81 maintain the indication of a weakly chaotic behavior of 

the destabilization dynamics. As in the previous cases, this limitation will be deepened in 

item 4.6, dedicated to the analysis of the extended and Gaussian q-exponential joint 

distribution. 

 

VARIATION OF ENTROPIC PARAMETERS Q AND Δ WITH THE POSITION OF THE 

MOST PROMINENT CONVEX POINT Y 

Figure 9 shows the variation of the parameters q and δ with the height of the base of 

the slope in relation to the most prominent point of the convex section. 

 

 
 

Figure 9 Variation of the entropic parameter δ with the height Y in relation to the base level 

 

It is observed that the parameter q shows a tendency to decrease with the increase 

in the height of point Y, more prominent in the convex part, while parameter δ shows an 

opposite trend, that is, to increase with the increase of Y. 
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The graphs also suggest that the Gaussian statistic would be valid for different 

values of the height Y, whether it is q or δ. Thus, for the first, Y should be between 17 and 

20 m, while for the second, between 20 and 25 m, because in these regions q and δ would 

be with values close to unity. 

In addition, the graphs markedly suggest the validity of non-Gaussian statistics in the 

phenomenon studied, with all the implications arising from this finding (e.g., the cessation of 

the validity of the classical Central Limit Theorem (TSALLIS and UMAROV, 2022; TSALLIS, 

2023). 

 

COMPARISON OF THE RESULTS OF THE BASELINE SCENARIO WITH THOSE OF 

IGNÁCIO'S C2 PROFILE (2019) 

The comparison of the results of case C2 of Ignácio's research (2019), with the 

results obtained in the Base Scenario of this research, are shown in Table 4. 

 

Table 4 Comparison of Case C2 and Base Scenario 

Entropy Parameters Values presented by Ignácio (2019) Base scenario 

Exten
ded 
Q-
Expo
nenti
al 

a' 0,1041 0,0547043 

b' 10,9006 10,799346 

C 54,6392 54,624439 

q 0,9803 0,8352076 

δ 0,8826 0,9501157 

Correlation coefficient 0,9982 0,9976617 

Gaus
sian 

The 0,1073 0,0563514 

B 10,6303 10,076701 

C 54,6382 54,632173 

Correlation coefficient 0,9965 0,9961701 

 

The observation of Table 4 suggests that, despite small variations, the values are 

very close. 

This small variation can be explained mainly by the fact of the considerations made 

in the modeling, such as the number of steps per rock, named in the software as maximum 

steps per rock. Ignacio in his thesis used 10,000 steps, while in this one 20,000 steps were 

used.  

In addition, the software version used in this research is more recent, that is, the 

results may point to small differences due to possible fixes, new functionalities, features and 

performance. However, both sets of values suggest weakly chaotic behaviors. 
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CONDITIONS FOR THE VALIDITY OF NON-GAUSSIAN STATISTICS IN THE PROBLEM 

OF FALLING BLOCKS 

As previously pointed out, statistics in power law are observed in physical 

phenomena characterized by long-range spatial and temporal memory, with the presence of 

some type of energy dissipation present in the phenomenon in question. 

The results presented above fully corroborate these statements. More specifically, 

extended q-exponential distributions were observed in situations in which the blocks 

remained in contact with the rocky slope for a long time, in a permanent exchange of 

information. 

In addition, the total energy that governs the phenomenon (most kinetic potential) 

proved to be insufficient, in the region located above point Y, to throw the unstable blocks 

away from the rocky slope, keeping them in contact with the rocky wall throughout the 

movement.  

This suggests the possibility of the occurrence of partially elastic shocks of the 

unstable blocks with the slope, dictated by the normal and tangential restitution coefficients 

lower than unity, as shown in Araújo (2021). This leads to the damping of the system's 

available energy, and reduces the effects of inertia on the movement of the blocks, keeping 

them as if connected to the slope most of the time. 

Figures 3, 4 and 5, relating, respectively, to Base Scenarios 1 and 2, suggest that the 

extended q-exponential distribution fits well to the experimental points, especially in its tail. 

In these cases, the total inadequacy of the Gaussian distribution is patent. 

 

CONDITIONS FOR THE VALIDITY OF GAUSSIAN STATISTICS IN THE PROBLEM OF 

FALLING BLOCKS 

On the other hand, as already pointed out, Gaussian statistics are observed in 

physical phenomena characterized by short-range spatial and temporal memory – or total 

absence thereof. 

Specifically, in the phenomenon of falling blocks, this translates into the short contact 

time of the falling blocks with the rocky slope, and there is, therefore, little exchange of 

information between the blocks and the slope.  

In addition, the total energy that governs the phenomenon (potential plus kinetic) is 

sufficient to throw the unstable blocks away from the rocky slope, the Y point constituting a 

trampoline.  

This indicates the action of inertia effects of great magnitude, with approximately 

elastic and sporadic shocks between the blocks and the rocky wall (Araújo, 2021). 
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CONDITIONS OF VALIDITY OF STATISTICS RESULTING FROM THE LINEAR 

COMBINATION OF EXTENDED GAUSSIAN AND Q-EXPONENTIAL DISTRIBUTIONS IN 

THE BLOCK DROP PROBLEM 

This time, the fall phenomenon is governed by the joint effects described in the two 

previous items, both by the dynamics upstream (above) of launch point Y (the 

aforementioned "trampoline effect"), and by the downstream dynamics of this same point. In 

more detail, in situations where the upstream dynamic keeps the blocks in contact with the 

slope (non-Gaussian statistics conditions), and the downstream dynamics throw them away 

from the rocky wall (Gaussian statistics conditions), the downslope result translates as a 

combination of these joint effects. 

Figures 10, 11 and 12, related to Scenarios 3, 4 and 5, respectively, illustrate this 

perspective well, in which the combined distribution is shown in black, for comparison with 

the Gaussian and extended q-exponential distributions, all on a semi-log scale. 

 
Figure 10 Log(p(x)) versus x Graph - Scenario 03 
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Figure 11 Log(p(x)) versus x Graph - Scenario 04 

 

 
Figure 12 Graph log(p(x)) versus x - Scenario 05 

 

The previous figures suggest that the combined distribution more faithfully portrays 

the experimental data from Scenarios 3, 4 and 5, which is why it is believed that both 

Gaussian and extended q-exponential distributions are acting together in the phenomenon 

of falling blocks. 

The adjustment parameters for each case are presented in Table 5. 
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Table 5 Values found resulting from the sum of the distributions 

Parameters Scenario 3 Scenario 4 Scenario 5 

a’ 4,9872 0,0457 0,4707 

b’ 7,4325 11,0690 4,5152 

C 49,8414 51,0351 49,8603 

q 1,0067 0,7659 2,8460 

δ 1,0025 1,1171 0,3414 

the -4,8910 -0,0062 -0,5475 

b -7,3655 4,0094 5,8351 

c 49,8191 52,5424 51,4294 

Correlation coefficient - R 0,9905 0,9991 0,9996 

 

As can be seen, the adjustments are much more precise, especially in the region of 

the tails of the distributions, portrayed by the higher correlation coefficients. 

It should be noted that the results of the analysis of the experimental data carried out 

in this research strongly suggest that the relative position of the concave and convex 

regions, which are part of a given geometry of a natural slope, has a marked importance in 

the response of the blocks down the slope and their respective statistics. That is, the order 

in which they are presented in the constitution of a given geometry of a natural slope has an 

influence on the statistics that govern the phenomenon. 

 

CONCLUSIONS 

The main conclusions reached at the end of this research are the following: 

• The statistical analysis of the phenomenon of falling blocks is an important tool for 

understanding this intricate phenomenon, since it makes it possible to describe 

certain regularities and reiterations, which a deterministic analysis would not be able 

to perform, especially in a phenomenon dependent on so many parameters; 

• In addition, the statistical analysis made it possible to clarify the validity regimes of 

Gaussian and non-Gaussian statistics. Specifically, non-Gaussian statistics occur 

frequently in long-range spatial and temporal memory phenomena, in which the 

unstable rock blocks remain in contact with the slope, effecting a continuous 

exchange of information and having the possibility of dissipating the total energy 

responsible for their dynamics; 

• On the other hand, Gaussian statistics are characterized by describing physical 

systems governed by short-range spatial and temporal memory, in which the blocks 

spend very little time in contact with the rocky slope, considerably reducing the 

possibility of information exchange between the blocks and the rocky wall; 

• This research also addressed the performance of the statistical distribution resulting 

from the linear combination of the Gaussian and extended q-exponential 
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distributions, proving to be more appropriate to describe rare phenomena, located at 

the tail of the distributions; 

• The difficulties involving simulations in the RockFall2 Program were also pointed out, 

particularly when a very large number of block launches is required, aiming at a more 

robust statistics of experimental data. In this sense, it is perceived that this program 

was designed for deterministic analyses aimed at the design of containment 

structures (impact) dictated by good engineering practice; 

• The situations analyzed in the different scenarios made it possible to evaluate the 

good performance of the non-Gaussian statistics, as well as the Gaussian statistics, 

the latter especially in the region of the warhead of the distributions. In particular, 

Base Scenarios 1 and 2 allowed us to observe the good performance of the 

extended q-exponential distributions, which configures destabilization phenomena 

classified as weakly chaotic (or complex); 

• The situations analyzed in Scenarios 3, 4 and 5 also suggested responses in 

agreement with statistics of complex systems, except in the region of their tails, 

characterized by rare events, in which the combined distribution proved to be more 

efficient; 

• The variation of the entropic parameters q and δ suggests that the first tends to have 

its values reduced when the height of the most prominent point of the convex region 

Y tends to increase, while the opposite happens with that second parameter, tending 

to have its values increased when the height of the point Y increases; 

• Finally, it is worth mentioning that the results of the analysis of the experimental data 

carried out in this research strongly suggest that the relative position of the concave 

and convex regions, which are part of a given geometry of a natural slope, has a 

marked importance in the response of the blocks down the slope and in their 

respective statistics. Therefore, the order in which they are presented in the 

constitution of a given geometry of a natural slope has an influence on the statistics 

that govern the phenomenon. 

 

SUGGESTIONS FOR FUTURE RESEARCH 

Some themes for future research can be suggested, including: 

• To significantly increase (in the order of 500,000 to 1,000,000) the number of entries 

in the statistical distributions used and to observe any discrepancies in the results, 

when compared to those already established by this line of research; 
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• Use of other statistical distributions (beta, e.g.) in the description of experimental 

data; 

• Clarify in more detail the role of convex and concave profiles in the dynamics of 

unstable blocks; 

• Investigate the divergence between initially very close launch trajectories and the 

evolution of their separation over time; 

• Incorporate the influence of the fragmentation of the unstable blocks in the statistical 

response of the phenomenon; 

• Incorporate the three-dimensional analysis of the phenomenon of falling blocks and 

investigate the emergence of any new behaviors not captured by the two-

dimensional analysis. 
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