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ABSTRACT 

Artificial Intelligence consists of an area where methods or systems are developed that act intelligently, 

approaching human behavior, in situations involving problem solving, acquisition and representation of 

knowledge, pattern recognition, etc. Within this context, a type of computational model that has gained 

prominence are the Artificial Neural Networks (ANNs), which are formed by basic blocks inspired by the 

biological neuron. An ANN has the ability to act in various applications, such as universal approximation of 

functions, process control, pattern recognition and classification, and data grouping. To meet a wide range of 

applications, an ANN requires the determination of a series of parameters, among them: topology, number of 

layers, number of neurons, activation function, training method, etc. In other words, the design of an ANN 

with the most appropriate configuration for each type of problem requires a series of choices, preliminary tests 

and experience from the designer. However, in order to avoid such choices being made empirically, it is 

possible to treat this parameterization as an optimization problem, allowing its resolution through the use of 

evolutionary algorithms, which are optimization tools developed to simulate several natural evolutionary 

processes. In this work, the Genetic Algorithm and Differential Evolution with binary coding were applied to 

automatically parameterize single-layer hidden neural networks applied in the modeling of a buck converter 

and in the prediction of compressive strength of self-compacting concrete (SCC) with the addition of fibers. 

The neural networks used were trained with the Extreme Learning Machine algorithm and the results of the 

simulations show that the Genetic Algorithm was the technique that presented the best performance when 

parameterizing the network in the modeling process of the buck converter, while the Differential Evolution 

combined with the binary coding GVP was the best strategy to parameterize the neural network in the process 

of predicting compressive strength of SCC. 

 

Keywords: Artificial Intelligence, Artificial Neural Networks, Parameterization, Evolutionary Algorithms, 

Binary Coding.
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INTRODUCTION 

Artificial Intelligence (AI) is an area that constitutes several computational procedures whose 

functions performed, if a human being performed them, would be considered intelligent. The main 

purpose of this area is to search for methods or computational systems that possess or reinforce the 

capacity of intelligent behaviors of human beings, such as solving problems, acquiring and 

representing knowledge, recognizing patterns, among others (Lima; Pinheiro; Santos, 2016). 

Intelligent systems are those that have certain capacities such as: knowledge acquisition, event 

planning, problem solving, information representations, knowledge storage, communication through 

colloquial languages and learning. 

According to Lima, Pinheiro and Santos (Lima; Pinheiro; Santos, 2016), the increase in 

computational power that has occurred in recent decades has allowed the prominence of a line of AI 

research known as Machine Learning. This line of research aims to study and develop computational 

methods to obtain systems capable of acquiring knowledge automatically. 

The main challenge of learning algorithms is to maximize the generalization capacity of their 

learning. Among the many promising alternatives to solve this challenge are Artificial Neural 

Networks. 

Artificial Neural Networks (ANN) have been, over the last few years, an area of AI of great 

development. ANNs can be characterized as computational models capable of adapting, learning, 

generalizing, grouping or organizing data. This ability is acquired through models inspired by the 

nervous system of living beings (Lima; Pinheiro; Santos, 2016; Silva; Spatti; Flauzino, 2010). 

Neural networks have some characteristics, such as non-linearity and adaptability, which 

allow their application in several areas. The main applications of neural networks are: universal 

approximation of functions, process control, pattern recognition and classification, data clustering, 

prediction systems, system optimization, and associative memories. 

An ANN is made up of a set of basic processing units that communicate by sending 

information to each other through certain connections. These processing units are called neurons and 

are mathematical models inspired by the biological neuron (Lima; Pinheiro; Santos, 2016). 

The form of interconnection of neurons in an ANN defines its architecture, the main ones 

being: single-layer feedforward, multi-layer feedforward, recurrent and lattice structure. Once the 

architecture is defined, there will also be the segmentation of the ANN into layers: the first layer 

receives the data to be processed; the intermediate layers treat them by extracting pertinent 

characteristics; and the last layer reproduces the generated results (Silva; Spatti; Flauzino, 2010). 

The way an ANN acquires knowledge about a given process is known as training and can be 

done through several algorithms, among which the following can be mentioned: backpropagation, 
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Newton's method, Levenberg–Marquardt and Extreme Learning Machine (Huang; Zhu; Siew, 2004; 

Silva; Spatti; Flauzino, 2010; Wilamowski; Irwin, 2018).  

The application of an ANN to solve a given problem, in addition to the choice of topology 

and training method, also involves a series of determinations related to the number of neurons, 

activation functions, initial weights, etc. For applications in the areas of system identification and 

time series forecasting, additional parameters may arise, such as: number of terms applied in the 

input layer, types of regressors, delays of input and/or output signals, etc. Each set of parameters 

chosen can lead to ANN performing better or worse, depending on the type of problem being treated. 

In other words, designing an ANN with the most appropriate configuration for each type of 

problem requires a series of choices, preliminary tests, and experience from the designer. However, 

in order for certain parameters not to be determined empirically, they can be treated as variables of an 

optimization problem, which in turn can be solved through various techniques, including 

evolutionary algorithms (Gaspar-Cunha; Takahashi; Antunes, 2013). 

Thus, this work aims to develop an ANN design strategy, using evolutionary algorithms in 

some stages so that the parameterization is performed automatically, aiming at practicality in the 

project and obtaining the best possible performance by ANN, meeting performance criteria to be 

selected. 

This work is organized according to the following items. Section 2 presents the theoretical 

basis of the topic studied. Section 3 will discuss the proposed strategy. Section 4 presents the case 

studies used in the work. Section 5 presents and discusses the results obtained. And finally, in section 

6 are the conclusions. 

 

THEORETICAL BACKGROUND 

This section presents the main concepts related to the subjects necessary for the elaboration of 

the proposed strategy for parameterization of neural networks using evolutionary algorithms. 

Concepts about artificial neural networks, evolutionary algorithms, and binarization are discussed. 

 

ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs) are computational models inspired by the nervous system 

of living beings. The elemental cell of the cerebral nervous system is the neuron and its role is limited 

to conducting impulses under certain operating conditions (Silva; Spatti; Flauzino, 2010). Like 

biological neural networks, ANNs are also composed of basic units: artificial neurons (referred to as 

"neurons"). 
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A neuron is an information-processing unit that is critical to the operation of a neural network 

(Haykin, 2001). The block diagram shown in Figure 1 shows the model of a neuron, which forms the 

basis for the RNA design. 

Three basic elements should be highlighted in this template: 

1 – A set of synapses, each characterized by a weight. Specifically, a signal 𝑥𝑗  at the 

entrance of the synapse 𝑗 connected to the neuron 𝑘 is multiplied by the synaptic weight 

𝑤𝑘𝑗. 

2 – An adder to sum the input signals, weighted by the respective synapses of the neuron; 

The operations described here constitute a linear combinator. 

3 – An activation function to restrict the amplitude of a neuron's output. 

The neuronal model in Figure 1 also includes an externally applied bias, represented by 𝑏𝑘. 

This bias has the effect of increasing or decreasing the net input of the activation function, depending 

on whether it is positive or negative, respectively. 

 

Figure 1 – Nonlinear model of a neuron. 

 
Source: Haykin (2001). 

 

In mathematical terms, we can describe a neuron 𝑘 by writing the following pair of equations: 

 

𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

                                                                    (1) 

and  

 

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘)                                                               (2) 

 

Where, 𝑥1, 𝑥2, ..., 𝑥𝑚 are the input signals; 𝑤𝑘1, 𝑤𝑘2, ..., 𝑤𝑘𝑚 are the synaptic weights of the 

neuron  𝑘; 𝑢𝑘 is the output of the linear combiner due to the input signals; 𝑏𝑘 it's the bias; 𝜑(∙) is the 

activation function; and  𝑦𝑘 is the output signal of the neuron (Haykin, 2001). 
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The ways in which neurons are interconnected define the topologies or architectures of neural 

networks. The main neural network architectures are presented by Silva, Spatti and Flauzino (2010), 

such as architecture feedforward single-layer, architecture feedforward multi-layered, recurrent or 

feedback architecture, and lattice architecture. 

Basically, an artificial neural network can be divided into three parts, called layers, which can 

be made up of a variable number of neurons and are named as follows: input layer, responsible for 

receiving information (data), signals, characteristics or measurements from the external environment; 

hidden layers, composed of neurons responsible for extracting the characteristics associated with the 

process or system to be inferred; and output layer, responsible for the production and presentation of 

the network's final results (Silva; Spatti; Flauzino, 2010). 

Figure 2 shows an example of a neural network with the input layer, two hidden layers, and 

the output layer, consisting of 𝑛, 𝑛1, 𝑛2 and 𝑚 neurons, respectively. The input layer receives the 

signal represented by the dataset 𝒙 =  [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛], the intermediate layers process this data, 

and the output layer presents the final result of the network, i.e. the dataset 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑚]. 

Specifically, this example network has multi-layer feedforward architecture. 

 

Figure 2 – Example of a  multi-layer feedforward network. 

 
Source: Silva, Spatti and Flauzino (2010). 

 

A given neural network architecture can have different types of topologies, which can be 

defined by the number of neurons used or by the different types of activation functions. Some 

examples of activation functions presented by Silva, Spatti and Flauzino (2010) They are: step 

function, sign function, symmetric ramp function, logistic function, hyperbolic tangent function, and 

Gaussian function. Figure 3 shows the Gaussian activation function, given by: 

 

𝑔(𝑢) = 𝑒
−

(𝑢−𝑐)2

2𝜎2                                                                     (3) 
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where, 𝑐 is a parameter that defines the center of the Gaussian function and 𝜎 denotes the standard 

deviation associated with it, that is, how spread the curve is with respect to its center. Still observing 

the graph in Figure 3, it is possible to see that the value of the standard deviation is directly 

associated with the inflection point of the Gaussian function, 𝜎2 indicating its respective variance. 

 

Figure 3 – Gaussian activation function. 

 
Source: Silva, Spatti and Flauzino (2010). 

 

Another relevant aspect of neural networks is the way knowledge is acquired and stored, that 

is, its training process, which consists of the application of a set of ordered steps in order to adjust the 

weights of the neurons (Silva; Spatti; Flauzino, 2010). Such an adjustment process, also known as a 

learning algorithm, then aims to tune the network so that its responses are close to the desired values. 

The main learning methods are: supervised, unsupervised, and reinforced. 

There are several types of neural network topologies and some that deserve to be highlighted 

are: Perceptrons Single Litter, Adaline, Perceptrons Multilayer, Radial Base Function Networks, 

Support Vector Machines, Committee Machines, Hopfield Recurrent Networks, Self-Organizing 

Kohonen Networks, LVQ Networks, and ART Networks (Haykin, 2001; Silva; Spatti; Flauzino, 

2010). 

In the case of neural networks of the type feedforward Single Layer (SLFN) Single Hidden 

Layer Feedforward Neural Network), it is possible to list some training algorithms, such as 

backpropagation, Newton and Levenberg–Marquardt method (Silva; Spatti; Flauzino, 2010; 

Wilamowski; Irwin, 2018), but an algorithm that has been gaining prominence in the literature is the 

so-called Extreme Learning Machine (ELM) (Huang; Zhu; Siew, 2004). This algorithm performs the 

training of SLFN networks in a fast and simplified way, making use of the generalized Moore-

Penrose inversion (Serre, 2002) to analytically calculate network egress weights. As presented by 

Huang, Zhu and Siew (2004), this technique allows to obtain the lowest norm of the weights, avoids 
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convergence to local minima and does not require many iterative steps to obtain the best learning 

performance, unlike what occurs in gradient-based descending methods. 

 

EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms are heuristic techniques inspired by adaptation mechanisms of living 

beings, as observed in nature, where certain mechanisms produce adequate responses to problems of 

great complexity. This effect, on which the development of evolutionary algorithms is based, occurs 

as a consequence of the execution of simple actions by multiple individual agents that interact with 

each other and with the environment, collectively producing the solution of the adaptation problem 

(Gaspar-Cunha; Takahashi; Antunes, 2013). 

As stated by Gaspar-Cunha, Takahashi and Antunes (Gaspar-Cunha; Takahashi; Antunes, 

2013), it is also worth mentioning that the class of evolutionary algorithms, in recent years, has 

grown in convergence with lines of research coming from the field of Operations Research, which 

has long been dedicated to the study of general-purpose stochastic heuristic techniques, known as 

metaheuristics. This allows the range of algorithms that can be applied to be even greater, 

increasingly enriching the development of techniques for solving complex problems. 

Some examples of evolutionary algorithms are: Genetic Algorithm (Holland, 1975), 

Differential Evolution (Storn; Price, 1997), Evolutionary Strategies (Rechenberg, 1965; Schwefel, 

1965), Genetic Programming (Koza, 1992), Ant Colony (Dorigo, 1992) and Immunoinspired 

Algorithms (De Castro; Timmis, 2002). In this work, the Genetic Algorithm (GA) and the 

Differential Evolution (DE) will be used as the algorithms applied in the automatic parameterization 

of neural networks. 

 

BINARIZATION 

The problem of parameterizing neural networks has some aspects characterized as binary 

optimization. For example, deciding how many and which inputs the network will have. Evolutionary 

algorithms are increasingly being applied to solve binary optimization problems. Some of them were 

originally created to deal with binary problems, such as the Genetic Algorithm, while others were 

designed to work with continuous variables and require some adaptation to deal with this type of 

problem, such as Differential Evolution (Dahi; Mezioud; Draa., 2015). 

In this work, the binarization used to adapt the Differential Evolution will be: Binary Coding 

by Transfer Function (TF) Transfer Function); Highest Value Priority (GVP) binary encoding Great 

Value Priority); and Binary Angle Modulation (AM) encoding Angle Modulation). All the 

codifications used in the research are detailed in the literature (Crawford et al., 2017). 
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PROPOSED STRATEGY 

The strategy proposed in this work for parameterization of neural networks using evolutionary 

algorithms consists of the application of some steps, which can be observed in the flowchart in Figure 

4. 

 

Figure 4 – Flowchart of the procedure applied for automatic parameterization of neural networks. 

 
Source: The Authors (2024). 

 

Initially, experimental data obtained from the studied system should be available. Next, it is 

necessary to determine which evolutionary algorithm will be used, which will manipulate solutions to 

perform the automatic parameterization of the neural network. The parameters to be determined in 

this study are the amount and types of inputs and the amount of neurons in the hidden layer. 

If the GA is selected, it has all the structures to determine these parameters. Both the 

determination of inputs and the choice of the number of neurons can be encoded by a vector in binary 

format. However, for DE, it will be necessary to apply binarization to determine the inputs, since this 

evolutionary algorithm is of the continuous type and, in its standard configuration, would only be 

able to determine the number of neurons. 

Considering all possible combinations between the DE algorithm and the binarization (TF, 

GVP and AM), in addition to including the GA algorithm in the analysis, a total of 4 techniques are 

obtained to be evaluated in the automatic parameterization process. These techniques are listed in 

Table 1. 
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Table 1 - Techniques applied in the automatic parameterization strategy 

Metaheuristics Binary coding Technique 

GA - GA 

DE 

TF DE-TF 

GVP DE-GVP 

AM DE-AM 

Source: The Authors (2024). 

 

The next step is to create an initial population of solutions and calculate the suitability of 

each solution using the objective function. This function will be composed of the neural network 

being applied in the prediction of the behavior of the system under study, through the stages of 

training with Extreme Learning Machine and model validation. 

The performance of a solution will be based on the validation of the model generated by this 

solution, with the square root of the mean squared error being applied as the performance index 

(RMSE, from English Root Mean Square Error) calculated using the following equation (Peñaranda; 

Saavedra-Montes, 2012): 

 

 𝑅𝑀𝑆𝐸 =  √∑ (𝑦(𝑘) − 𝑦̂(𝑘))
2𝑁

k=1

𝑁
 (4) 

 

Where 𝑦(𝑘) and 𝑦̂(𝑘) are, respectively, the outputs observed and predicted using the 

validation data, and 𝑁 is the amount of data used.  

From this point, the iterative cycle of evolutionary algorithms begins, where operators are 

applied to evolve the population of solutions. Each time this cycle is executed, one generation is 

counted and the same will be repeated until some stop criterion is reached. In this work, the stopping 

criterion used will be the maximum number of generations. 

Once the stop criterion is reached, the algorithm will end the search and the best set of 

parameters for the neural network will be the one that generates a model with the lowest RMSE. 

With the completion of this step and selection of the best parameters, a simulation is completed. For 

the purpose of analyzing the performance of the techniques presented, each simulation will be 

repeated several times. 

To evaluate the performance of each technique, the mean behavior of the convergence curve 

of the objective function will be initially verified. For this, in each generation the values obtained by 

all simulations will be taken and the average will be taken. 

Another way to evaluate the performance of the techniques will be through the value of the 

objective function achieved at the end of each simulation. In this case, the minimum, mean, 
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maximum and standard deviation values will be verified among all the simulations performed by 

each technique. 

All the codes used in this work were implemented in the Matlab software and the simulations 

were run on a laptop with an Intel Core i7 processor and 16GB of RAM ( Random Access Memory). 

 

CASE STUDIES 

This section presents the test systems that will be used as case studies to validate the proposed 

strategy. 

 

MODELING A BUCK CONVERTER 

The first case study of this work consists of using a neural network to model a Buck converter. 

The modeling strategy consists of applying system identification techniques using a single-layer 

hidden neural network trained with the Extreme Learning Machine algorithm, according to a study 

conducted by Oliveira and Leandro (2019). 

The Buck converter that will serve as the object of study was initially discussed in the work of 

Aguirre, Donoso-Garcia and Santos-Filho (2000) and is often used as a test system in the area of 

system identification. The Buck converter diagram is shown in Figure 5. 

 

Figure 5 – Diagram of the buck converter. 

 
Source: Aguirre, Donoso-Garcia and Santos-Filho (2000). 

 

The load voltage regulation system is not shown in Figure 5. In the experiment performed 

with this converter, the power supply 𝑣𝑑 was kept constant and equal to 24𝑉. To excite the dynamics 

of the converter, we opted for an input signal of the PRBS type, limited between 2,2𝑉 and 2,5𝑉, 

applied to the Buck using a Digital/Analog converter (Aguirre; Donoso-Garcia; Santos-Filho, 2000). 

In this experiment, the voltage that defines the cyclic ratio of the converter was considered as 

the input signal, 𝑢(𝑘), and the electrical voltage at the output of the converter was adopted as the 

output signal, 𝑦(𝑘). A total of 2000 pairs of samples were collected, which can be seen in Figure 6. 
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Figure 6 – Data collected from the buck converter. (a) input signal and (b) output signal. 

 
Source: Aguirre, Donoso-Garcia and Santos-Filho (2000). 

 

As the data were sampled at a higher rate than necessary, it was decided to apply a working 

sampling time equal to 𝑇𝑠∗ = 120𝜇𝑠, resulting in a total of 166 pairs of samples. In addition, the data 

were divided into two distinct sets, each with 50% of the 166 sample pairs. The first half of the data 

was used to estimate the models and the second half was reserved for the validation stage, as shown 

in Figure 7. 

 

Figure 7 – Input and output signals of the buck converter. Estimation (a) and validation (b) data. 

 
Source: The Authors (2024). 

 

The data presented in FIGURE 8 were used by Aguirre, Donoso-Garcia and Santos-Filho to 

obtain models for the    (2000) buck converter. These same data were made available on the internet 

by the authors, which allowed their use in this case study. 

 

PREDICTION OF COMPRESSIVE STRENGTH OF SELF-COMPACTING CONCRETE (SCC) 

WITH THE ADDITION OF FIBERS 

The second case study of this work consists of the use of the neural network to predict the 

compressive strength of self-compacting concrete (SCC) with the addition of fibers. The literature 



 

 
Multidisciplinary Perspectives: Integrating Knowledge 

Automatic parameterization of neural networks using evolutionary algorithms 

points to several studies that apply similar approaches (Balasubramaniyam; Padmanabhan, 2022; 

Gholanjadeh-Chitgar; Berenzian, 2019; Najm; Mohammad; Alzard, 2023; Saha; Prasad; Kumar, 

2017; Tavakoli et al., 2014), since the prediction of properties of materials used in civil construction 

using computational techniques has shown very promising results.    

SCC is a material used in civil construction and is characterized by its ability to flow through 

the heavily reinforced section with the required viscosity without segregation (Balasubramaniyam; 

Padmanabhan, 2022). In addition, it tends to present greater strengths from the addition of fibers, 

when compared to concrete without additions. 

The database used was experimentally developed by Saha, Prasad and Kumar (2017) 

containing a total of 99 samples. For the prediction of a single output (compressive strength), nine 

input parameters were used, which include quantities of cement, fine aggregate (sand), coarse 

aggregate, fly ash, glass fibers, polypropylene fibers, water, super plasticizer and viscosity modifier 

additive (VMA). 

The data were divided into two sets: the training set, with 80% of the data (80 samples), and 

the test set with 20% of the data (19 samples). Figure 8 shows the output values of these two sets 

 

Figure 8 – SCC compressive strength values. Training (a) and test (b) data. 

(a) 

 

 

(b) 

 

Source: The Authors (2024). 
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RESULTS 

In this section, the results obtained by the application of the strategy proposed in the case 

studies indicated in section 4 will be presented and discussed. 

 

PARAMETER CONFIGURATION 

In order to apply the proposed strategy in the resolution of the case studies presented, it was 

initially necessary to determine the type of neural network that will be used. The single hidden layer 

topology was selected, using a sigmoid activation function and trained with the Extreme Learning 

Machine algorithm.  

Next, you must determine the variables that will serve as input to the neural network. In the 

first case study, since this is a modeling problem, it is necessary to select the set of candidate terms 

for the buck converter model. This set is shown in Figure 9 (Oliveira; Leandro, 2019). In the second 

case study, the problem consists in the prediction of the compressive strength of SCC with the 

addition of fibers, which makes it necessary to indicate which materials will serve as input. In the 

case of this material, the inputs are: cement, fine aggregate (sand), coarse aggregate, fly ash, glass 

fibers, polypropylene fibers, water, super plasticizer, viscosity modifier additive (VMA). 

 

Figure 9 – Set of candidate terms for input from the neural network of the buck converter. 

 
Source: Oliveira and Leandro (2019). 

 

In addition to the neural network inputs, the algorithms must select the number of neurons in 

the hidden layer of the network. This number will vary from 1 to 30 and the ideal value will be 

determined by the algorithms, by running 10 simulations for each number of neurons tested and 

choosing the amount that presents the best performance for the network. 

For the size of the populations of the evolutionary algorithms, a value of 50 was adopted. The 

maximum number of generations adopted was the value of 100, which was considered as the 

criterion for stopping the algorithm. 

Specific parameter values of each algorithm were selected heuristically through independent 

tests. The best values found for these parameters are shown in Table 2. 
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Table 2 - Parameters of evolutionary algorithms 

Metaheurística Parameter Value 

GA 

𝑡𝑠𝑛 0,6 

𝑡𝑐 0,7 

𝑝𝑚 0,05 

DE 

𝐹𝑚 0,7 

𝐶𝑟 0,6 

Estratégia DE/rand/1/bin 

Source: The Authors (2024). 

 

RESULTS FOR BUCK CONVERTER MODELING 

Using the configurations presented in section 5.1, the strategy presented in section 3 was 

applied to each of the 4 technique options listed in Table 1, and a total of 30 simulations were 

performed for each technique. The mean convergence curves, resulting from the 30 simulations of 

each technique, can be seen in Figure 10. On the other hand, the statistical results of the RMSE for all 

techniques are presented in Table 3, and the mean value indicated corresponds to those presented in 

Figure 10. 

 

Figure 10 – Mean convergence curves of the 4 techniques applied in the modeling of the buck converter. 

 
Source: The Authors (2024). 

 

Table 3 - RMSE values achieved by the techniques in modeling the buck converter 

Technique Minimum Medium Maximum Standard Deviation 

GA 0,14884 0,15314 0,15640 0,0018789 

DE-TF 0,15357 0,15718 0,16403 0,0020830 

DE-GVP 0,15381 0,16294 0,16807 0,0035657 

DE-AM 0,15605 0,16336 0,16950 0,0033986 

Source: The Authors (2024). 

 

Analyzing Figure 10 and Table 3, it is possible to observe that GA was the technique that 

achieved the best mean performance (lowest mean RMSE value) for the buck converter modeling 

problem, with a value of 0.15314. In second place was the DE-TF technique, with a  mean RMSE 

2.64% higher than that achieved by the GA. The techniques with the worst mean performances were 
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DE-GVP and DE-AM, with  mean RMSE 6.40% and 6.67% higher than the GA, respectively. 

Regarding convergence speeds, all 4 techniques had similar performance, without any stopping at 

local minimums. 

From these considerations, it is possible to verify that, as most of the parameters determined 

for the network are in binary format (inputs), GA showed a better performance in the determination 

of such parameters, since this technique is a natively binary algorithm. It was also possible to observe 

that the choice of binary coding influenced the performance of the DE, with the TF coding being the 

one that provided the DE with its best average performance. 

Looking at the "Minimum" column in Table 3, it is possible to observe the RMSE values  of 

the best model found by each technique. These models are a consequence of the best set of 

parameters (inputs and neurons) that each technique has selected for the neural network. These 

parameters are shown in Table 4. 

 

Table 4 - Parameters selected by the techniques in the buck converter modeling problem 

Technique Nº of entries Chosen terms 
Nº of 

neurons 

RMSE of the 

model 

GA 5 1º, 3º, 4º, 7º e 20º 8 0,14884 

DE-TF 13 
1º, 3º, 4º, 6º, 7º, 9º, 10º, 15º, 16º, 17º, 18º, 23º 

e 24º 
9 0,15357 

DE-GVP 15 
1º, 3º, 4º, 6º, 7º, 9º, 10º, 15º, 18º, 19º, 20º, 21º, 

23º, 24º e 27º 
15 0,15381 

DE-AM 9 1º, 3º, 4º, 7º, 9º, 11º, 13º, 19º e 20º 13 0,15605 

Source: The Authors (2024). 

 

Tables 3 and 4 show that the lowest RMSE value  found was 0.14884, which represents the 

RMSE of the best model found in the entire study. Thus, it can be seen that the GA, in addition to 

having obtained a better average behavior in terms of convergence, found a set of parameters that 

generated the best model among all those tested in the simulations. It is also worth mentioning that 

the set of parameters indicated by the GA results in the network of less complexity, compared to the 

other parameters indicated by the other techniques in their best scenarios. 

The neural network parameterized by GA has only 8 neurons in the hidden layer and 5 inputs, 

which receive 3 order terms 1 and 2 order terms 2. This neural network is shown in Figure 11 and the 

simulation of the model obtained with it is presented in Figure 12. 
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Figure 11 – Neural network configured with the parameters selected by GA to perform buck converter modeling 

 
Source: The Authors (2024). 

 

Figure 12 – Prediction of a step ahead of the model obtained with the neural network in Figure 11 

 
Source: The Authors (2024). 

 

It can be seen from Figure 12 that the model obtained with the neural network presented in 

Figure 11 represents well the dynamic behavior of the real system, that is, in addition to presenting 

the lowest RMSE among all the models obtained, its validation through simulation also reinforces the 

quality of the model.  

 

RESULTS FOR THE PREDICTION OF COMPRESSIVE STRENGTH OF SCC WITH THE 

ADDITION OF FIBERS 

The proposed strategy was also applied to the problem of predicting the compressive strength 

of SCC with the addition of fibers, using the configurations presented in section 5.1, and for each of 

the 4 options of techniques listed in Table 1, a total of 30 simulations were performed for each 

technique. The mean convergence curves, resulting from the 30 simulations of each technique, can be 

seen in Figure 13. The statistical results of the RMSE for all techniques are presented in Table 5, and 

the mean value indicated corresponds to those presented in Figure 13. 
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Figure 13 – Mean convergence curves of the 4 techniques applied to the problem of predicting the compressive strength 

of SCC with the addition of fibers. 

 
Source: The Authors (2024). 

 

Table 5 - RMSE values achieved by the techniques applied to the problem of predicting the compressive strength of SCC 

with added fibers. 

Technique Minimum Medium Maximum Standard Deviation 

GA 0,76828 0,98267 1,14150 0,092832 

DE-TF 0,73032 0,80330 0,87576 0,039255 

DE-GVP 0,73866 0,80071 0,88993 0,034929 

DE-AM 0,73840 0,87581 0,97690 0,053924 

Source: The Authors (2024). 

 

Analyzing Figure 13 and Table 5, it is possible to observe that DE-GVP was the technique 

that achieved the best mean performance (lowest mean RMSE value) for the problem of predicting 

the compressive strength of SCC, with a value of 0.80071. In second place was the DE-TF technique, 

with an  average RMSE only 0.82% higher than that achieved by the DE-GVP. The techniques with 

the worst mean performance were DE-AM and GA, with  mean RMSE 9.38% and 22.72% higher 

than DE-GVP, respectively. Regarding the convergence speeds, the DE-based techniques showed 

similar performances, without any stopping at local minimums. The GA, on the other hand, showed a 

higher convergence speed at the beginning of the simulations, but was stuck in many local minimums 

from the 10th generation onwards. 

From these considerations, it is possible to verify that, although most of the parameters 

determined for the network are in binary format (inputs), in this specific problem the technique that 

presented the best results was the DE with binary encoding. It was also possible to observe that the 

choice of binary coding influenced the performance of the DE, with the GVP coding being the one 

that provided the DE with its best average performance. 

Looking at the "Minimum" column in Table 5, it is possible to observe the RMSE values  of 

the best model found by each technique. These models are a consequence of the best set of 

parameters (inputs and neurons) that each technique has selected for the neural network. These 

parameters are shown in Table 6. 
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Table 6 - Parameters selected by the techniques in the problem of predicting the compressive strength of SCC with added 

fibers 

Technique Nº of entries Entries chosen 
Nº of 

neurons 

RMSE of the 

model 

GA 4 cement, sand, fly ash, water 30 0,76828 

DE-TF 4 cement, sand, fly ash, water 29 0,73032 

DE-GVP 5 cement, sand, fly ash, water, VMA 30 0,73866 

DE-AM 4 cement, sand, fly ash, water 30 0,73840 

Source: The Authors (2024). 

 

Tables 5 and 6 show that the lowest RMSE value  found was 0.73032, which represents the 

RMSE of the best model found in the entire study. This model has cement, sand, fly ash and water as 

inputs and 29 neurons in the occult layer, these parameters being selected by the DE-TF technique. 

Although this model presented the lowest RMSE value, it was verified that the other techniques also 

obtained models with parameters similar to this one, both in the inputs and in the number of neurons 

in the occult layer. The neural network that represents the best model obtained is shown in Figure 14 

and the predicted values for the output are shown in Figure 15. 

 

Figure 14 – Neural network configured with the parameters selected by DE-TF to perform the prediction of SCC 

compressive strength with the addition of fibers 

 
Source: The Authors (2024). 

 

Figure 15 – Prediction of the compressive strength of the model obtained with the neural network in Figure 14 



 

 
Multidisciplinary Perspectives: Integrating Knowledge 

Automatic parameterization of neural networks using evolutionary algorithms 

 
Source: The Authors (2024). 

Figure 15 shows that the model obtained with the neural network presented in Figure 14 

represents well the behavior of the developed composite, i.e., in addition to presenting the lowest 

RMSE among all the models obtained, the prediction of compressive strength values in values close 

to the real ones also reinforces the quality of the model.  

 

CONCLUSION 

This work presents a comparative study between evolutionary algorithms applied to the 

problem of automatic parameterization of neural networks used in system identification and 

prediction of compressive strength of SCC with addition of fibers. Two types of algorithms were 

used: those that originally manipulate binary solutions and those that are designed to work with 

continuous values and, therefore, need coding to manipulate solutions in the binary search space. 

The evolutionary algorithm of binary solutions applied was the Genetic Algorithm (GA) and 

the evolutionary algorithm of continuous solutions used was the Differential Evolution (DE). To 

implement the binary versions of the DE, the encodings by Transfer Function (TF), Highest Value 

Priority (GVP) and Angle Modulation (AM) were applied. 

Two case studies were conducted using single-layer hidden layer neural networks, trained 

with Extreme Learning Machine, being applied in the modeling of a buck converter  and in the 

prediction of compressive strength of SCC with the addition of fibers, both systems presenting data 

available in the literature. 

In the case study that addressed the modeling of the buck converter, the results obtained 

indicated that the GA presented the best performance, locating the best set of parameters (inputs and 

neurons) for the network used, generating a model with less complexity and with lower RMSE. 

Another perception obtained from the results was that the choice of binary coding significantly 

influenced the performance of the DE, which obtained its best average performance when combined 
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with TF coding. It was also possible to verify that the best model obtained presented good results 

when submitted to the simulation validation of the one-step forward prediction, adapting well to the 

dynamic data of the system. 

In the other case study, which addressed the prediction of compressive strength of SCC with 

the addition of fibers, the results showed that the best parameters for the neural network were 

obtained by the DE-TF technique, generating the model that presented the lowest RMSE. As in the 

previous case study, it was also possible to observe that the best model obtained presented good 

results when submitted to validation by comparing the predicted values of compressive strength with 

the actual values, indicating that the model satisfactorily represented the behavior of the composite 

presented. 

It is noteworthy that the present study was focused on selecting the inputs and the number of 

neurons of a single hidden layer neural network, not prioritizing, for example, the choice of the 

activation function, initial weights and biases, training algorithm, among other possible parameters. 

In addition, the goal was to obtain models with the greatest possible fit to the test data of the systems, 

without considering other types of characteristics such as model complexity and computational cost. 

  

FUTURE WORK 

The possibilities for the continuation of this work involve the following topics, but are not 

limited to these: 

­ Perform the parameterization considering other parameters besides the inputs and number 

of neurons; 

­ Test the developed approach with other neural network topologies; 

­ Apply the methods presented to obtain models from other systems; 

­ Use other evolutionary algorithms to reinforce the conclusions reached; 

­ Explore other binary encoding methods. 
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