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ABSTRACT 

The purpose of this note is to present compositions of linear transformations in  the language of 

matrices, as well as to present geometric interpretations for some particular cases of order 2 matrices 

such as reflections around the x and y axes, reflections around the origin, contraction, expansion or 

homothetic, horizontal and vertical shear, counterclockwise rotation, orthogonal projection of u = (x,  y) 

on the line G : y = ax, a /= 0, as well as the reflection of the same vector around this same line. 

G. It is worth mentioning that your compositions in the language of matrices is a first model of computer graphics. 

Illustratively, for example, the expansion of factor k : Hk (x, y) = (kx, ky) or in the language of matrices, represents 

a computer zoom by zooming if k > 1 or contracting if 0 < k < 1. 
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INTRODUCTION 

A BIT OF HISTORY SURROUNDING THE NAME MATRIZ 

It was only a little more than 150 years ago that matrices had their importance detected and 

came out of the shadow of the determinants. The first to give them a name seems to have been 

Cauchy, 1826: tableau (table). The name matrix only came with James Joseph Sylvester, 1850. His 

friend Cayley, with his famous Memoir on the Theory of Matrices, 1858, publicized this name and 

began to demonstrate its usefulness. Why did Sylvester give the name matrix to the matrices? He used 

the colloquial meaning of the word matrix, that is: place where something is generated or created. In 

fact, he saw them as "... a rectangular block of thermoses... which does not represent a determinant, 

but is as if it were a matrix from which we can form several systems of determinants, by fixing a 

number p and choosing at will p rows and p columns..."article published in the Philosophical 

Magazine of 1850, p. 363-370 ). Note that Sylvester still saw matrices as a mere ingredient of determinants. It 

is only with Cayley that they begin to take on a life of their own and gradually begin to supplant the 

determinants of importance. 

 

EMERGENCE OF THE FIRST RESULTS OF MATRIX THEORY                                    

It is often said that in a more advanced course of Matrix Theory - or its more abstract version, 

Linear Algebra - it should go at least up to the Spectral Theorem. Well, this theorem and a whole host of 

ancillary results were already known before Cayley began to study matrices as a remarkable class of 

mathematical objects. How can this be explained? These results, as well as most of the basic results of 

Matrix Theory, were discovered when mathematicians of the fifteenth and nineteenth centuries began to 

investigate the theory of quadratic forms. Today, we consider it essential to study these forms through 

notation and matrix methodology, but at that time they were treated scalarly. Let us show here the 

representation of a quadratic form of two variables, both via scalar notation and with the more modern 

matrix notation: 

 

 

 

The first implicit use of the notion of matrix occurred when Lagrange 1790 reduced the 

characterization of the maxima and minima of a real function of several variables to the study of the sign 

of the quadratic form associated with the matrix of the second derivatives of this function. Always working 

(symmetric matrix) where: 
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in a scalar way, he came to a conclusion that we now express in terms of a defined positive matrix. After 

Lagrange, in the nineteenth century, the Theory of Quadratic Forms became one of the most 

important subjects in terms of research, especially with regard to the study of its invariants. These 

investigations had as a by-product the discovery of a large number of results and basic concepts of 

matrices. Thus, we can say that the Theory of Matrices had as its motto the Theory of Quadratic 

Forms, since its basic methods and results were generated there. Today, however, the study of quadratic 

forms is a mere chapter in matrix theory. It should also be noted that the determinants contributed nothing 

to the development of the Matrix Theory. 

 

COMPOSITIONS OF LINEAR TRANSFORMATIONS 

Definition: Let you and B be vector spaces over R and let T be : U →B and G : B →W 

linear transformations. The compound G◦ T : U → W, is given by: 

 

 

 

 

For the compound G ◦ T we have: the image of T is contained in or equal to the domain of G : 

 

 

 

Similarly, we have: 

For the composite T ◦ G to exist, it only makes sense when: the image of G is contained in or equal 

to the domain of G : 

 

 

 

Next, the theorem that characterizes that composed of linear transformations are also linear. 

Theorem : Let T ∈  5 (U; B) and G ∈ 5 (B; W), then, G ◦ T : U → W, G ◦ T ∈ 5 (U; W) is linear. 

 

Note: 

5 (U; B) is the space of all linear transformations from U to B. 

5 (B; W) is the space of all linear transformations from B to W. 
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◦ 

 

Demo 

Let G and T be linear transformations, then we want to show that: 

 

 

it's linear. 

Indeed 

 

 

 

(i) 6u1, u2 ∈ A, one has: 

 

 

 

(ii) 6λ ∈ R, 6u1 ∈ A, you get: 

 

 

 

Therefore, G ◦ T : U → W is linear. 

 

Examples: 

1. Let T : R3→R2 and G : R2→ R3 be linear transformations defined by: 

(e) T(x, e, x) = (s + e, s + 2x) (ii) G (x, y) = (x + y, 2y, x — y) 

Pede-se: (i) G ◦ T (ii) T ◦ G 

 

Solution 

(i) G T 

 



 

 
Eyes on Health Sciences V.02 

A look at the composition of linear transformations in the language of matrices, some types of matrices of order 2 represented 

geometrically in the R2 plane 

 

 

Before we start operationalizing, it is essential to understand the stickers they represent; Not the 

letters used, let's see: 

G tells us that: it takes the sum of the first two coordinates of the domain, it is the first 

coordinate of the image, the fold of the second coordinate of the domain is the second coordinate of the 

image, and finally, the difference of the two coordinates of the domain is the third of the image. 

Symbolically, we have: 

 

 

 

Thus, it is easy to obtain the compound, namely: 

 

 

 

A very interesting way, and usually not in the texts in general, is to make the composition using 

matrix form in the canonical base for simplicity 

 

 

 

Constructing the corresponding matrices [G] and [T], we obtain: 

 

 

 

and 
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Hence, multiplying (1) and (2), it follows that: 

 

 

 

By rewriting the matrix form G ◦ T in the canonical base, we get: 

 

 

 

Proceeding in a similar way, it comes: 

 

 

 

A brief comment, it is essential to understand the stickers they represent; Not the letters used, let's 

see: 

T tells us: that: takes the sum of the first two coordinates of the domain, in the first coordinate of 

the image, the first coordinate of the domain with the fold of the third is the second coordinate of the 

image. In symbol, we have: 

 

 

 

Thus, it is easy to obtain the compound, namely: 
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It is noteworthy that: usually does not appear in the texts in general, the composition using matrix 

form in the canonical basis 

 

 

 

Constructing the corresponding matrices [G] and [T], we obtain: 

 

 

 

and 

 

 

 

Therefore, it comes: 

 

 

 

Rewriting in matrix form on the canonical basis, we get: 
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TRANSFORMATION OF THE PLAN INTO THE PLAN 

REFLECTION AROUND THE X-AXIS: 

 

 

 

In the language of matrices, the reflection around the x-axis, described in matrix form, we 

have: 

 

 

 

Reflection around the y-axis: 
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In the language of the matrices, the reflection around the origin will be given by: 

 

 

 

Homothetia, Contraction or Expansion 

 

 

 

In the language of the matrices, Homothetia, Contraction or Expansion, is given by: 
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IN AN ENTIRELY ANALOGOUS WAY, HOMOTHETIC, CONTRACTION OR EXPANSION, 

FOR 0 < H < 1, WE HAVE 

 

 

 

In the language of the matrices, Homothetia, Contraction or Expansion, is given by: 

 

 

 

Horizontal shear of h-factor : 
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In the language of matrices, the horizontal shear will be given by: 

 

 

 

Vertical shear of h-factor : 

 

 

 

 

In the language of the matrices, the vertical shear of factor h will be delineated by: 

 

 

 

Anti-horory rotation of an angle θ : 

 



 

 
Eyes on Health Sciences V.02 

A look at the composition of linear transformations in the language of matrices, some types of matrices of order 2 represented 

geometrically in the R2 plane 

 

 

In the language of matrices, the counterclockwise rotation of an angle θ is given by: 

 

 

 

Note: 

Anti-horory rotation of an angle θ : 
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Please note that: 

∆OAB : 

 

 

 

∆OAB : 

 

 

 

 

 

Then, using the identities 

 

 

 

 

 

Now, substituting (1) into (3), (4), we get: 

 

 

 

So 
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Or rewriting the counterclockwise rotation in matrix form, we have: 

 

 

 

If the rotation is non-clockwise, simply replace θ with (—θ), highlighting that 

 

 

 

The hourly rotation matrix will be given by: 

 

 

 

Theorem  

Let you and B.vector spaces over R and let T : U →B be a linear transformation. T is injector if, 

and only if, Ker (T ) = (0} 

 

 

 

Demonstration: 

Part 1: We want to show that: 

uO ∈ Ker (T ) and T is injector, so uO = 0 

(=⇒) In fact, uO ∈ Ker(T), so T(uO) = 0 = T(0). 

Now, since T is injector, it follows that: uO = 0. 

Soon 

 

 

 

It's an 

injector 
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Part 2: 

Reciprocally, we want to prove that: 

(⇐=) Ker(T) = (0} and for all u1, u2 ∈ U : T (u1) = T (u2) =⇒ u1 = u2, i.e. T is injector. 

See 

 

 

 

So: T is an injector. 

Note: 

 

 

 

This theorem is valid in infinite dimension, since at no time is dimension used in its proof. 

 

Example1: 

Prove that: C([0, 1]) is isomorphic to C([2, 3]), i.e., C([0, 1])' C[2, 3] . 

It is worth noting that: 

 

 

 

Proof: 

In fact, 2 ≤ x ≤ 3 ⇐⇒ 0 ≤ x — 2 ≤ 1, then we can take 

 

 

 

It's easy to see that T is linear (Check!) 

Let's prove that T is an isomorphism, for simplicity's sake let's do the following: 

It's an 

injector 

A continuous function}. 
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Similarly, the inverse of is given by: 

 

 

 

Also, look at the following diagram: 

 

 

 

Statement 1: T is an injection molding machine 

Let ƒO ∈ Ker (T ), then T [ƒO] (x) = (ƒOoę) (x) = 0, hence let us dry that: ƒOoę. So 

 

 

 

In other words, we have: 

 

 

 

So: T is an injector. 

Statement 2: T is superjective 

 

 

 

Therefore, T is superjective. 

Therefore, T is an isomorphism. In addition, we can write in another way: 

so that: 
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Example 2: 

Let T : R3→ R2 be a linear transformation, defined by: 

 

 

 

The following are requested: 

Check: T is injecting machine and get the dim Ker (T). 

dim Fm(T ) is a base for Fm(T ). Is T a superjector? 

Claim: T is not an injector. 

In fact, the T nucleus is described by: 

 

 

 

 

So 

 

 

 

It follows that: T is not an injection molding machine. Also, dim Ker (T) = 1. 

Now, by the nucleus and image theorem, we have: 

 

 

 

and Fm (T ) ⊆ R2. Thus, Fm(T) = R2 and therefore T is superjective. 

Let's determine the geradores for Fm (T ) : T (x, y, x) = x (1, 1) + y (—1, 1) . 

Hence the following: Fm (T ) = [(1, 1) , (—1, 1)]. Since dim Fm(T ) = 2, it follows that β = ((1, 1) , (—1, 

1)} is a basis for Fm(T ). 
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Theorem : Let you and B be vector spaces over R, let U be of finite dimension [dim U < ∞] and let 

T : U →B be a linear transformation. We have then: 

 

 

 

Demo: See references [7, 10, 13, 16, 18] 

Example: 

Let T : D1 (R) →R2 be a linear transformation, defined by: 

 

 

 

Prove that: T is an isomorphism, then get T —1 : R2→ D1(R). 

 

Eureka!!! 

Core and image theorem 
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Proof 

Statement 1:                              is injector⇐⇒ Ker (T ) = (0x + 0} . 

A priori, by definition the nucleus of T is given by: 

 

 

 

See: 

 

 

 

Therefore, Ker (T ) = (pO (x) = 0x + 0} = (0} ⇐⇒ T is injector. 

Statement 2: T is superjective  

In the light of the nucleus and image theorem we have: 

 

 

 

and Fm (T ) ⊆ R2, whence comes: Fm (T ) = R2. 

Therefore, T is superjective, and consequently we get: T is an isomorphism.  

Now, let's find the inverse isomorphism: 

 

 

 

 

 

In other words, we need to find h1 and h2 as a function of aO and bO. 

See 
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2 3 

Thus, substituting (2) into (1) follows the inverse isomorphism: 

 

 

 

Comments 

The compositions of linear transformations and their inverses produce the results 

 

 

 

Hence, it comes: 

 

 

 

Similarly, we have: 

 

 

 

Therefore, we get: 

 

 

 

Problem: 

1. Find A : R2 → R2 which is a linear transformation given by: a contraction 

of factor 1 followed by a counterclockwise rotation of π rad . Highlight [A] . 

 

Solution: 
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4 

 

 

Like this 

 

 

 

Thus, A in matrix form is given by: 

 

 

 

 

 

Or even,  

 

2. Find A : R2 → R2 which is a linear transformation given by: a counterclockwise rotation of π rad 

followed by a factor expansion of        Highlight [A] . 

Solution: 

In fact, making the diagram for the composition, we have: 

 

 

 

Like this 
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Thus, A in matrix form is given by: 

 

 

 

Or even, 

 

 

 

3. Find the orthogonal projection P : R2 → R2 of a vector u = (x, y) over the line 5: y = ax, a /= 0 

( Sketch the problem.) 

Solution: 

 

 

 

Note that β = ((1, a) , (—a, 1)} is a basis for R2, such that the orthogonal projection satisfies: 
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From this, we get: 

 

 

 

where, comes: 

 

 

 

Now, by substituting (2) into (1), we get: 

 

 

 

Applying P and its linearity, we get: 

 

 

 

Note: Revisiting Vector Analytic Geometry: 

 

such as: 
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If we use the orthogonal projection P of u = (x, y) over u1 = (1, a), we immediately get : 

 

 

 

Rewriting the orthogonal projection in matrix form, we have: 
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4. You will get reflection S : R2 → R2 from a vector u = (x, y) around the line 5 : y = ax, a /= 0. 

Solution: 

 

 

 

Suffice it to note that: 

 

 

 

where the identity I: R2 → R2 is given by: I(x,y) = (x,y). 

The matrix of reflection S is given by: 

 

 

 

Let T : R2→R2, be a linear transformation defined by: 
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and let A = ((x, y) ∈ R2; max (|x| , |y|} = 1} . Determine T (A). 

 

Solution: 

Auxiliary Calculations: 

 

 

 

and 

 

 

 

In addition, we have 

 

 

 

T transforms the square on side 1 into a paraelogram, geometrically, we have: 
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Let T : R2→R2, be a linear transformation, defined by: 

 

 

 

The following are requested: 

(i) Prove by definition that T is an injector. (ii) Show that T is superjective. 

Solution: 

We want to show that: T : R2→R2 is an injection molding machine by definition: 

 

 

 

Consider that  u1, u2 ∈ R2, com u1 = (x1, y1) and a2 = (x2, y2), then, tem-se: 

 

 

 

So: T is an injector by definition. 

We want to show that: T : R2→R2 is superjective by definition: 
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It is necessary to obtain xO and yO as a function of a and b. 

See 

 

 

 

Then you get it. 

 

 

 

Like this 

 

 

 

Therefore, it comes: 

 

 

 

Or again, Fm (T ) = R2 and therefore T is superjective by definition. 

Consequently, T is bijective. 

5. Let T : D1(R) →R2 be a transformation defined by: 

 

 

 

Prove that: 

T is linear (b) T is injector (by definition). (s) Is T superjective? Justify! 

Solution: 
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(i) 6p1, p2 ∈ D1 (R), we have: 

 

 

 

6λ ∈ R, 6p1 ∈ D1 (R), we have: 

 

 

 

Therefore, T is linear. 

We want to show that: T : D1(R) →R2 is an injection molding machine by definition: 

 

 

 

Let's consider p (x) = ax +b ∈ D1             , we have: . Thus, T will be rewritten in the form: 

 

 

 

 

So T is injector. 

(s) T : Is D1(R) →R2 superjective? We want to show that: 

 

has been: 
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That is, the image of T is equal to R2 itself ( There are no elements left in the range of T ). We 

need to find aO and bO as a function of O and βO. 

Indeed 

 

 

 

Like this 

 

 

 

Therefore, Fm (T ) = R2, i.e., T is superjective by definition. 

Note: 

 

 

 

Another, more far-fetched way of proving subjectivity will be given by: 

 

 

 

The image of T is generated by (1, 1) and (0, 1), hence we get: 
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Statement: r = ((1, 1) , (0, 1)} is linearly independent In fact, given the equation 

 

 

 

Therefore, r = ((1, 1) , (0, 1)} is linearly independent and therefore comes: r is a basis for R2. In 

addition, dim Fm(T) = 2 (number of vectors of one of the bases) and Fm(T) ⊆ R2. Thus: Fm (T ) = R2, i.e., T is 

superjective. 

Don't forget! 

 

T : D1(R) →R2 is an injection molding machine and a superjector⇐⇒ T is an ejector 

 

6. Let T : Rn→R, T (x1, x2, . . . , xn)                     = a1x1 + . . . + anxn  a linear transformation. 

Prove that T is a superjector. 

Solution 

 

1ST MODE: 

Indeed, for 6    ∈ R : IX = (x1, x2, . . . , xn) ∈ Rn, such that: 

 

 

 

Therefore, Fm (T ) = R, i.e., T is superjective. 

 

2ND MODE: 

Suffice it to note that: 

 

 

 

Hence, it comes: 
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( It is not appropriate), because T would be identically null. 

 

Therefore, dim Fm (T ) = 1 and Fm (T ) ⊆ R, from which we get: Fm (T ) = R and therefore T is 

superjective. 

Let T : U →B be a linear transformation. Prove that: 

 

 

 

Solution 

Suffice it to note that: 

 

 

 

Soon 

 

 

 

Indeed, 

 

 

 

It follows that: 

 

 

 

Note that: 
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Now, from the previous item T (—v) = —T (v), therefore, we get: 

 

 

 

The proof will be by finite induction on n 

For n = 2 : 

 

 

 

Suppose valid for n (induction hypothesis), then it is missing to show for n + 1. 

Indeed 

 

 

 

So 

 

 

 

Let T : D3 (R) → D4 (R) be a transformation. Defined by: 

 

 

 

Prove that: T is linear. 
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Solution 

 

 

 

So T is linear. 

Let C ([a, b]) be the set of continuous functions ƒ : [a, b] → R. Define 

 

 
 

Prove that: T is linear. 

Proof: 

 

 

 

So: T is linear. 

Let T : R2→R2, be a T.L. such that: T (1, 0) = (1, 1) and T (1, 1) = (0, 3) . 

Determine: 

T(x,y) 

If T is an automorphism. If so, get T —1 (x, y) 

Solution: 

6 (x, y) ∈ R2:Iλ1, λ2 ∈ R : (x, y) = λ1 (1, 0) + λ2 (1, 1) . 

From there, it comes : 

, we have 

, one has 
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Like this 

 

 

 

Now, applying T and its linearity, we get: 

 

 

 

So 

 

 

 

T is bijetora.se, and only if, T is injector and superjector. 

Statement 1:                   it is an injector⇐⇒ Ker (T ) = ((0, 0)}  

By definition of T core, we have: 

 

 

 

Vejamos T (xO, yO) = (xO — yO, xO+ 2yO) = (0, 0). From there: 

 

 

 

Therefore: 
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Ker (T ) = ((0, 0)} ⇐⇒ T is injector. 

Also, dim Ker (T) = 0. 

Now, in light of the nucleus and image theorem, we have: 

 

2 = dim R2 = 0 + dim Fm (T ) =⇒ dim Fm (T ) = 2 

 

and since Fm(T) ⊆ R2 it follows that: 

 

 

 

In other words, T is a superjector, and consequently we get: T is a bijector, or T is an 

automorphism. Now, let's find the inverse automorphism 

Solution: 

Get 

 

 

 

See 

 

 

 

Hence it comes: 

 

 

 

Therefore, T − 1 is an automorphism 
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Appendix 

Theorem: 

The space of the linear transformations of U into B, such that: dim U =n and dim B =m is isomorphic 

to the space of matrices of order m × n with real inputs, i.e., 5 (U; B) is isomorphic to Mmvn (R) and is 

denoted by: 

 

 

 

The fixation of the bases β c U and β'c B therefore determines a transformation of the 

 

 

 

DEMONSTRATION 

Statement 1: Ф is linear 

 

 

 

Therefore, Ф is linear. 

Claim 2: Ф is an injection molding machine 

In fact, Ker (Ф) = (ƒ ∈ 5 (U; B) : Ф (ƒ) = 0} . 

Let's look at Ф (ƒ)   

 

As                                              , it follows that:  

ƒ (u) = 0.6u ∈ U. Consequently comes: ƒ Ξ 0. 

Therefore, Ker (Ф) = (0}, or again, Ф is injector. 

Statement 3: Ф is superjective 

6B ∈ Mmvn (R), Iƒ ∈ 5 (U; B) , such that:  
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Let us consider ƒ : U —→ B, such that: 

 

 

 

So: Ф is a superjector. Therefore, we get: 5 (U; B) is isomorphic to Mmvn(R) . 

 

Corollary 

Let you and B be two vector spaces over R such that: 

dim U = n and dim B = m. So, the space 5 (U; B) has dimension m.n 

 

Demonstration 

Let β and β' be the bases of you and B respectively. 

A —→ B, Ф: 5 (A; B) —→ Mmxn (R), then we have,                                      dim 5 (A; A; B) = 

dim Mmxn (R) = m.n  

 

CONCLUDED 

This mathematical look of a creative and flexible increasing mentality can be given as geometrical 

interpretations of the linear transformations of the plane into the plane in the language of the matrices of 

order 2, without any increase in difficulty in mathematical literacy . It is worth mentioning that: the 

compositions of transformations of the plane in the plane, serves as a first model of computer 

graphics. 

  

So we have: 
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