

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

CHAPTER 2

Web Scraping: Data search and retrieval methodology in information science

https://doi.org/10.56238/sevened2023.008-002

Gilnei Machado
Ph.D. Professor, Professor in the Graduate Program in

Information Science, State University of Londrina

ABSTRACT

Web scraping is a process of automated data

collection on websites through the action of bots or

programs. It is important nowadays because

databases are getting bigger and bigger and, in

general, there is an urgent need for information. The

technique presented makes it possible to extract

texts, numerical data, images, files and tables,

available both on the site's home page and in its

various tabs. The aim of this chapter is to present

the potential of using Web scraping through Python

to collect data from websites and its importance for

information retrieval in Information Science. We

used command lines written by Lisa Tagliaferri to

check whether these command lines work and

whether we were able to obtain the desired

information. The site used to retrieve the desired

information about artists' names and the links to

their names was Web archive, which lists all the

artists whose works are in the National Gallery of

Art in the USA. As a result, we realized that

command lines are extremely useful for obtaining

information, since they allow us to obtain a large

amount of information in a short time. In

conclusion, we saw that scraping data from

websites is perfectly feasible using Python and its

code and that the information retrieved was fully

satisfactory.

Keywords: Information retrieval, Data scraping,

Programming in Information Science, Python.

1 INTRODUCTION

Web Scraping is a process of automated data collection on internet sites (MITCHELL, 2018)

through the action of "bots" or programs, for subsequent processing of this data and removal of the

desired information.

Data scraping can be done manually, when it comes to a small amount of data, however, in

times of "Big Data", it is practically impossible to carry out the activity in this way, which is why, in

the Web scraping Programming is extremely important, mainly because it makes it possible to

automate the consultation of the servers where the data are stored, and is well defined as an automatic

method of data extraction (BARBOSA; CAVALCANTI, 2020).

The technique, presented here, not only allows the extraction of texts or numerical data from

the analyzed sites, but also helps in the extraction of information presented in the form of images, files

and tables, made available both on the home page of the site and in its various tabs, that is, in all areas

of the site.

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

The entire web scraping process can be carried out through Python or R, especially the steps

of programming, scraping and mining the data to extract elements and behaviors relevant to the

interests of the research. In Python, the Beautiful Soup and Requests modules are used.

It should be noted that it is not the purpose of this chapter to teach how to use Python, R or

even to teach a technique that allows you to scrape data on any and all web pages. The objective here

is to discuss the importance of the Web Scraping technique or method, for the extraction of data in an

automated way from the internet and the transformation of this data into relevant and useful

information (MOOERS, 1951). Thus, the chapter aims to present the potential of the use of Web

scraping through Python in the collection of data present in web sites and its importance for the

retrieval of information in Information Science.

2 METHODOLOGY

As this is a theoretical-conceptual-practical debate, we used analysis and bibliographic research

on the subject, seeking to elucidate the doubts related to all basic conceptual elements.

On the other hand, the practical part demanded the study of the language used in Python and

the ways of writing the programming for Web Scraping through the modules Beautiful Soup and

Requests.

The Python programming language is widely used in the data science community and therefore

has an ecosystem of modules and tools that can be used in various projects. In this chapter we will

focus on the Beautiful Soup and Requests modules.

Beautiful Soup is a library of Python tools that allows for a quick turnaround of results in web

scraping projects. Currently available as Beautiful Soup 4 (BS4) and compatible with Python 2.7 and

Python 3. Beautiful Soup creates a parsing tree from HTML and XML documents. On the other hand,

the Requests library is used to make requests and requests in a database.

The scraping of data on the internet is completely ethical and legal, in case of correct use of the

information collected and in case of collection on websites that do not express in writing the prohibition

of this practice. The legal challenge to the procedure may arise from the misuse of information,

collection of private and private data and sale to third parties of the information obtained.

3 RESULTS AND DISCUSSION

3.1 PERFORMING WEB SCRAPING WITH PYTHON

As previously highlighted, the purpose of this chapter is not to teach Python, but it is worth

remembering that it was used as a basis for the development of this research and that it greatly

facilitates the work of those who want or need to scrape data from the web. Therefore, it should be

noted that before any step to be carried out in web scraping , it is necessary to install and configure

https://www.crummy.com/software/BeautifulSoup/

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

this software, in addition to importing and installing the modules or libraries Requests and Beautifull

Soup, in case you decide to carry out the scraping process with the help of Python, of course.

In addition to installing the software and importing the libraries, it is necessary to think about

the command lines or the program to be used and, for this stage of the chapter, we use command lines

written by Lisa Tagliaferri1 (2023). The goal here is to check if these command lines work and if we

can, in fact, get the desired information.

We will collect and analyze the data from a web page, in order to record the information in a

text or CSV file. The page to be used is the official website of the National Gallery of Art of2 the United

States. The National Gallery is an art museum located in the city of Washington, D.C., where more

than 120,000 pieces of art by more than 13,000 artists are stored, dating from the Renaissance to the

present day.

Despite the large number of works and artists present in the museum, initially we will not need

to extract much data from the site, as the objective here is to demonstrate the effectiveness of the tool

in extracting this data and not in extracting all the data. With this, we will reduce the scope of research

to just one artist and among all the letters of the alphabet, we decided to stick with the artists whose

last name begins with the letter "Z".

Of the artists with a surname beginning with "Z", the one who appears in first place in the

search carried out on the Web Archive, 3where the works and artists of the museum are registered, is

Niccola Zabaglia4 (Figure 01), with the last artist mentioned being Václav Zykmund5. In all, 116 artists

were found with surnames beginning with the letter "Z", distributed in four pages of results (e.g., Zab-

Zao, Zas-Zie, Zie-Zor) (Figure 01).

1 https://www.digitalocean.com/community/users/ltagliaferri, accessed November 20, 2023.
2 https://www.nga.gov/
3 Index available at: https://web.archive.org/ or https://archive.org/ or in

https://web.archive.org/web/20170131230332/https://www.nga.gov/collection/an.shtm of the Internet Archive.
4 https://web.archive.org/web/20121007172955/http://www.nga.gov/collection/anZ1.htm
5 https://web.archive.org/web/20121010201041/http://www.nga.gov/collection/anZ4.htm

https://www.digitalocean.com/community/users/ltagliaferri
https://www.nga.gov/
https://web.archive.org/
https://archive.org/
https://web.archive.org/web/20170131230332/https:/www.nga.gov/collection/an.shtm
https://web.archive.org/web/20121007172955/http:/www.nga.gov/collection/anZ1.htm
https://web.archive.org/web/20121010201041/http:/www.nga.gov/collection/anZ4.htm

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

Figure 01: Index obtained in the search for Artist with Last Name starting with the letter Z

Source: Available at: https://web.archive.org/web/20121007172955/http://www.nga.gov/collection/anCOM1.htm,

accessed November 20, 2023.

3.1.1 Step 1: Importing the libraries

Once we have decided on which site to scrape the data and most importantly, which data to

scrape, it is time to proceed to what we call step 1, which involves the installation and configuration

of Python and its libraries.

To install Python, just go to the https://www.python.org/downloads/ page and choose the

version of interest (Windows, Linux, Mac), download it and proceed with the installation.

Python uses IDEs to insert command lines. Among the many IDEs that exist, we suggest

installing Visual Studio, which is available at https://code.visualstudio.com/download.

Once Python and Visual Studio are installed, it's time to import the Python libraries, the first of

which is the Requests Library and the second is BeautifullSoup. This step must be performed using

command lines typed in Visual Studio (Figure 02).

A library is nothing more than a set of modules and commands in Python, organized and made

available in advance so that you can import and save time when programming.

Once these two libraries are imported, we will need to identify or assign the URL of the

homepage, creating a variable called page, using the requests.get() method as shown in Figure 02.

https://web.archive.org/web/20121007172955/http:/www.nga.gov/collection/anCOM1.htm
https://www.python.org/downloads/
https://code.visualstudio.com/download

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

Figure 02: Importing Python Libraries.

import requests

from bs4 import BeautifulSoup

Collecting the first page of artists

page = requests.get('https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ1.htm')

Source: The Author (2023).

After importing the beautifullSoup You must create an object or parse tree. This object must

take as an argument the text of the page to be analyzed, i.e., page.text = html.parser. In other words,

an html file is created, which is analyzed to remove the content of the response from the server (Figure

03).

Figure 03: Creating a BeautifulSoup Object

import requests

from bs4 import BeautifulSoup

page = requests.get('https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ1.htm')

Creating a BeautifulSoup Object

soup = BeautifulSoup(page.text, 'html.parser')

Source: The Author (2023).

With the page of interest collected, it is possible to continue the process and proceed with the

extraction of the texts of interest on the web page. It should be noted that this is only possible thanks

to the fact that the page has been collected, analyzed, and configured as an object of BeautifullSoup.

3.1.2 Step 2: Extracting text from a web page

At this point we are interested in searching for the name of the artists and the most relevant

links to the site, however, other data can also be collected, such as the nationality of the artists and the

periods of history in which they lived.

The question at this point for those who are not familiar with the subject may be: How to do

this? Where do we find such information? The answer to these questions is quite simple. The

information can be found in the DOM of the website or web page.

3.1.2.1 And what is the DOM?

DOM is the acronym for "Document Object Model," which is a programming interface for

HTML, XML, and SVG documents that provides a structured representation of the document. This

model defines the methods that allow access to the structure, style and content of the site, being formed

by nodes and objects with various properties and methods, which provide the connection between web

pages to scripts or programming languages.

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

Access to the DOM of each site is done through the browser, just having the site open and right-

clicking on any area of it and choosing the "Inspect" or "Inspect Document" option. In the list of artists'

names, the object of analysis in this chapter, we could click on any name to obtain the desired

information, as shown in Figure 04.

Figure 04: Representation of DOM access through the inspect item

Source: the author (2023).

After clicking on the Inspect item in the menu, the tools of interest to the developers will appear

in the browser (Figure 05), which will allow access to the Tags linked to the names present in the list

of artists and the html of the site.

Figure 05: Inspected item: artist name Niccola Zabaglia

Source: The Author (2023).

When we inspect from the name of Niccola Zabaglia it is possible to see that the table with the

name of the artists present in the letter Z is inside the <div> of the tags where we have a class called

"BodyText". Associated with this name is also a link tag, as it has a page that explains who the artist

is (Figure 05).

In data scraping, it is important to extract the name of the artists present in the table, described

in the file "BodyText <div>", for this you must go back to Python and BeautifullSoup with the

command find() and find_all(). The program indicated for this is shown in Figure 06.

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

Figure 06: Extraction of text from the Site.

import requests

from bs4 import BeautifulSoup

Collect and analyze the first page

page = requests.get('https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ1.htm')

soup = BeautifulSoup(page.text, 'html.parser')

Extract all text from BodyText div

artist_name_list = soup.find(class_='BodyText')

Extract text from all instances of <a> tag from within BodyText div

artist_name_list_items = artist_name_list.find_all('a')

Source: The Author (2023).

Right after finding the name of the artists present in the list, we will need to perform a "forloop"6

(loop) over these names or variable (artist_name_list_items). Their presentation will be performed

using prettify() (Figure 07), which is used to transform the BeautifulSoup parse tree into a formatted

unicode string.

Figure 07: Creating a for loop.

...

artist_name_list = soup.find(class_='BodyText')

artist_name_list_items = artist_name_list.find_all('a')

Create loop to print the names of all artists

for artist_name in artist_name_list_items:

 print(artist_name.prettify())

Source: The Author (2023).

From this moment on, we can run the program in order to obtain feedback from the pages where

the information is stored. This data has already been recorded in the created document

(Nome_do_arquivo).

Figure 08: Execution of the File with the information of the four pages

1. python nga_z_artists.py (that's the file name7)

2.

Source: The Author (2023).

Once the procedure has been performed, we will receive the result shown in Figure 09.

What we see in the output at this point is the full text and tags relatedto all the artist names

within the <a>tags found in the <div class="BodyText">tag of the first page, as well as some

6 A for loop is used to iterate over a sequence (which is a list, a tuple, a dictionary, a set, or a string). This looping will be

performed as many times, until the programmer's need is satisfied.
7 nga_z_artists.py = Python file with the list of artists with surnames beginning with "Z" from the National Gallery of Art

(nga).

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

additional link text at the bottom. Since we don't want this extra information, we'll work to remove it

in the next section.

So far, we've been able to collect all the link text data in a <div> section of the web page.

However, it doesn't matter at the moment that links don't reference artist names, so we're going to work

to remove that part.

Figure 09: File Execution Result with Information

Output

 Zabaglia, Niccola

...

 Zao Wou-Ki

 Zas-Zie

 Zie-Zor

 next

 page

Source: The Author (2023).

To remove the links from the page, let's right-click again and inspect the DOM. We'll see that

the links at the bottom of the <div class="BodyText"> section are contained in an HTML table <table

class="AlphaNav"> (Figure 10).

Figure 10: Inspection of the DOM or html of the web page.

Source: The Author (2023).

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

We can therefore use Beautiful Soup to find the AlphaNav class and use the decompose()

method to remove a tag from the parse tree and then delete it along with its contents. We'll use the

last_links variable to reference these bottom links and add them to the program file (Figure 11):

Figure 11: Removing Link Buttons

import requests

from bs4 import BeautifulSoup

page = requests.get('https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ1.htm')

soup = BeautifulSoup(page.text, 'html.parser')

Remove bottom links

last_links = soup.find(class_='AlphaNav')

last_links.decompose()

artist_name_list = soup.find(class_='BodyText')

artist_name_list_items = artist_name_list.find_all('a')

for artist_name in artist_name_list_items:

 print(artist_name.prettify())

Source: The Author (2023).

Now, when we run the program with Python, we will receive the output exposed in Figure 12.

At this point, we see that the output no longer includes the links at the bottom of the web page

and now displays only the links associated with the artists' names. So far, we've directed the links

specifically to the names of the artists, but we have extra tag data that isn't interesting for analysis and

should be eliminated. This is what will be accomplished in the next section of commands.

Figure 12: Output File After Execution

Output

 Zabaglia, Niccola

 Zaccone, Fabian

...

 Zanotti, Giampietro

 Zao Wou-Ki

Source: The Author (2023).

3.1.3 Step 03: Extracting the Content of a Tag

To access only artist names, we'll want to target the content of the <to>tags instead of printing

the entire link tag. We can do this with Beautiful Soup's .contents, which will allow us to revise forloop

https://www.digitalocean.com/community/tutorials/how-to-scrape-web-pages-with-beautiful-soup-and-python-3#pulling-the-contents-from-a-tag

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

so that instead of printing the entire link and its tag, we only print the list with the full names of the

artists:

With the commands in Figure 13, we're iterating over the list of names by calling the index

number of each item. We can run the program with Python to view the list of names and we will get

back a list (Figure 14), with all the names of the artists available on the first page of the letter Z.

If we also want to capture the links associated with all these names, we can extract these URLs

from <a>tags of a page using get('href'), which is a method of the Beautiful Soup method (Figure 15).

From the output of the links, we know that the entire URL is not being captured, so we will

concatenate the link string with the front of the URL string (in this case https://web.archive.org/)

(Figure 15).

Figure 13: Removal of Tag Children – artist names

import requests

from bs4 import BeautifulSoup

page = requests.get('https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ1.htm')

soup = BeautifulSoup(page.text, 'html.parser')

last_links = soup.find(class_='AlphaNav')

last_links.decompose()

artist_name_list = soup.find(class_='BodyText')

artist_name_list_items = artist_name_list.find_all('a')

Using .contents to remove <a> the children from the tag to artist_name in artist_name_list_items:

 names = artist_name.contents[0]

 print(names)

Source: The Author (2023).

Figure 14: Output: List of artists' names with surname in "Z"

Output

Zabaglia, Niccola

Zaccone, Fabian

Zadkine, Ossip

...

Zanini-Viola, Giuseppe

Zanotti, Giampietro

Zao Wou-Ki

Source: The Author (2023).

Figure 15: Using href

...

for artist_name in artist_name_list_items:

 names = artist_name.contents[0]

 links = 'https://web.archive.org' + artist_name.get('href')

 print(names)

 print(links)

Source: The Author (2023).

https://www.digitalocean.com/community/tutorials/understanding-lists-in-python-3#indexing-lists
https://www.digitalocean.com/community/tutorials/understanding-lists-in-python-3#indexing-lists
https://www.digitalocean.com/community/tutorials/an-introduction-to-working-with-strings-in-python-3#string-concatenation

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

When we run the program in Figure 15, we will receive the names of the artists and the URLs

of the links that present more information about the artists (Figure 16).

Figure 16: Output after href run: names and links

Output

Zabaglia, Niccola

https://web.archive.org/web/20121007172955/https://www.nga.gov/cgi-bin/tsearch?artistid=11630

Zaccone, Fabian

https://web.archive.org/web/20121007172955/https://www.nga.gov/cgi-bin/tsearch?artistid=34202

...

Zanotti, Giampietro

https://web.archive.org/web/20121007172955/https://www.nga.gov/cgi-bin/tsearch?artistid=11631

Zao Wou-Ki

https://web.archive.org/web/20121007172955/https://www.nga.gov/cgi-bin/tsearch?artistid=3427

Source: The Author (2023).

Although we are extracting information from the website, at the moment it is only being

presented in our terminal window, however this presentation format does not interest us much,

although it is valuable. This chapter of this demonstration is interested in capturing and using this data

elsewhere and this will only be possible by recording this information in a text file (CSV).

3.1.4 Step 04: Writing the Data to a CSV File

Collecting and visualizing data that is only presented in a Python IDE terminal window is

neither very practical nor useful. On the other hand, comma-separated value (CSV) files allow you to

store data in plain text tables, and are a common format for spreadsheets and databases. For this

procedure, we first need to import the built-in Python csv module (Figure 17).

Figure 17: Importing a CSV file

import csv

Source: The Author (2023).

Right after importing the CSV, you can create and open a file called z-artist-names.csv (or

whatever name you want to give it). In the creation of this file, the variable 'f' and the mode 'w' will be

used. You should also write the titles of the top lines: Name and Link, which will be passed to the

writerow() method as a list (Figure 18).

Figure 18: Creating a CSV file with Artist Name and Link.

f = csv.writer(open('z-artist-names.csv', 'w'))

f.writerow(['Name', 'Link'])

Source: The Author (2023).

Finally, inside forloop, we'll write each line with the names of the artists and the links associated

with them (Figure 19).

https://www.digitalocean.com/community/tutorials/how-to-scrape-web-pages-with-beautiful-soup-and-python-3#writing-the-data-to-a-csv-file

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

Figure 19: Creating Lines with Artist Name and Link

f.writerow([names, links])

Source: The Author (2023).

You can see the rows for each of these tasks in Figure 20.

Figure 20: Adding each artist's name and associated link to a row

nga_z_artists.py

import requests

import csv

from bs4 import BeautifulSoup

page = requests.get('https://web.archive.org/web/20121007172955/http://www.nga.gov/collection/anZ1.htm')

soup = BeautifulSoup(page.text, 'html.parser')

last_links = soup.find(class_='AlphaNav')

last_links.decompose()

Create a file to record and add header row

f = csv.writer(open('z-artist-names.csv', 'w'))

f.writerow(['Name', 'Link'])

artist_name_list = soup.find(class_='BodyText')

artist_name_list_items = artist_name_list.find_all('a')

for artist_name in artist_name_list_items:

 names = artist_name.contents[0]

 links = 'https://web.archive.org' + artist_name.get('href')

 # Add each artist's name and the link associated with a row

 f.writerow([names, links])

Source: The Author (2023).

If we run the program at this point, we won't get any output as a response, instead a file will be

created in the directory you're working on, called z-artist-names.csv (or whatever name you want to

give it).

In the test performed for this chapter, a readable CSV file in Excel was created. It is worth

reminding readers that we are performing this scraping on a site where the information of the National

Gallery of Arts is registered and that this may cause the presence of non-executable links in the output

of the program, as is the case of the link in the output to the artist "Zadkine, Ossip" present in Figure

21.

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

Figure 21: Names and links of the artists present in the output of the terminal

z-artist-names.csv

Name, Link

"Zabaglia, Niccola",https://web.archive.org/web/20121007172955/http://www.nga.gov/cgi-bin/tsearch?artistid=11630

"Zaccone, Fabian",https://web.archive.org/web/20121007172955/http://www.nga.gov/cgi-bin/tsearch?artistid=34202

"Hitkine, Ossip",https://web.archive.org/web/20121007172955/http://www.nga.gov/cgi-bin/tsearch?artistid=3475w

...

Source: The Author (2023).

In the CSV file, this information may look like a spreadsheet (Figure 22).

With the creation of the CSV file, we will be able to use the data in a more meaningful way,

since the information collected is now stored on our computer.

Figure 22: Spreadsheet created from CSV file.

Source: The Author (2023).

3.1.5 Step 05: Retrieving Information from Related Pages

We have created a program to extract information from the first page of the list of artists whose

surnames begin with the letter Z, however, there are 4 pages in total of these artists available on the

site. To collect all these pages, we can perform further iterations with forloops. This will review most

of the code we've written so far, but it will employ similar concepts.

To begin, we must create a list that will contain the pages (Figure 23).

Figure 23: Creation of the list containing the web pages referring to the artists

pages = []

Source: The Author (2023).

We'll populate this initialized list with a forloop (Figure 24).

https://www.digitalocean.com/community/tutorials/how-to-scrape-web-pages-with-beautiful-soup-and-python-3#retrieving-related-pages

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

Figure 24: Scrolling through pages 1 to 5 to make the list of pages.

for i in range(1, 5):

 url = 'https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ' + str(i) + '.htm'

 pages.append(url)

Source: The Author (2023).

Since there are 4 pages for the letter Z, we constructed the forloop present in Figure 24 with a

range of 1 to 5 so that it runs through each of the 4 pages. For this particular site, the URLs start with

the string https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ and then

are followed by a number for the page (which will be the integer i of the forloop that we converted to

a string) and end with .htm.

We'll concatenate these strings and then append the result to the pages list. In addition to this

loop, we must use another loop that will run through each of the pages. The code in this forloop is

going to look similar to the code that we've created so far in that it's performing the task that we

completed for the first page of the letter Z artists, this will be accomplished for each of the four pages

and since we put the original program on the second forloop, we now have the original loop as a

nested for loop. 8

In the code (Figure 25), you should see that the first forloop is iterating through the pages

and the second forloop is collecting data from each of those pages and then adding the names of the

artists and links line by line on each line of each page.

These two forloops come below the import statements, the creation and writing of the CSV

file (with the line to write the file headers), and the initialization of the pages variable (assigned to a

list). The two forloops will look like this (Figure 25):

Figure 25: Execution of the two forloops traversing the 4 web pages

pages = []

for i in range(1, 5):

 url = 'https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ' + str(i) + '.htm'

 pages.append(url)

for item in pages:

 page = requests.get(item)

 soup = BeautifulSoup(page.text, 'html.parser')

 last_links = soup.find(class_='AlphaNav')

 last_links.decompose()

 artist_name_list = soup.find(class_='BodyText')

 artist_name_list_items = artist_name_list.find_all('a')

 for artist_name in artist_name_list_items:

 names = artist_name.contents[0]

 links = 'https://web.archive.org' + artist_name.get('href')

8 It's the loop that occurs without interruptions. Example: the months of the year. They start in January and go until

December, then it starts all over again.

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

 f.writerow([names, links])

Source: The Author (2023).

Within the larger context of the programming file, the complete code looks like this (Figure

26):

Figure 26: Full Code

nga_z_artists.py

import requests

import csv

from bs4 import BeautifulSoup

f = csv.writer(open('z-artist-names.csv', 'w'))

f.writerow(['Name', 'Link'])

pages = []

for i in range(1, 5):

 url = 'https://web.archive.org/web/20121007172955/https://www.nga.gov/collection/anZ' + str(i) + '.htm'

 pages.append(url)

for item in pages:

 page = requests.get(item)

 soup = BeautifulSoup(page.text, 'html.parser')

 last_links = soup.find(class_='AlphaNav')

 last_links.decompose()

 artist_name_list = soup.find(class_='BodyText')

 artist_name_list_items = artist_name_list.find_all('a')

 for artist_name in artist_name_list_items:

 names = artist_name.contents[0]

 links = 'https://web.archive.org' + artist_name.get('href')

 f.writerow([names, links])

Source: The Author (2023).

It may take a while to create the CSV file, since the program is long, but once created, the

production will be complete, showing the names of the artists and their associated links from Zabaglia,

Niccola to Zykmund, Václav.

4 FINAL THOUGHTS

The exercises carried out throughout this chapter, using the lines of code created by Lisa

Tagliaferri (2023), allowed us to verify that data scraping on websites is perfectly achievable from

Python and its codes.

The results obtained were fully satisfactory, since we were able to obtain, automatically, the

information related to artists with surnames beginning with Z and who have works in the National

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

Gallery of Art. This procedure could be carried out for any list of artists, that is, for any letter between

A and Z. It is not advisable to carry out the search for isolated artists, due to the work it takes and the

ease that it would be to enter the site and type the name of this artist.

The retrieval of the names and links to these artist names allows access to other information

about these artists, such as the time in which they lived, works created and place of birth.

Before thinking about carrying out the web scraping procedure, it becomes necessary to take

into account the servers from which we will obtain the information. It is essential to check if the website

has terms of service or terms of use related to web scraping, that is, if they allow or prohibit it in an

explicit (written) way or if the website has an API that allows you to capture data, before extracting it.

It should be remembered that the constant and incessant search for data from a website will

make it understand it as a robot or malware that must be blocked and certainly your IP will be blocked.

That's why we shouldn't continuously access servers to collect data, we shouldn't overload someone

else's servers.

A good practice for web scraping, and to avoid being blocked, is to include a header that

contains your name and email so that a website can identify you and contact you if you have any

questions. An example header you can use with the Python Requests library is shown in Figure 27:

Figure 27: Creating a Header for Personal Identification During Scraping

import requests

headers = {

 'User-Agent': 'Your Name, example.com',

 'From': 'email@example.com'

}

url = 'https://example.com'

page = requests.get(url, headers = headers)

Source: The Author (2023).

At this point, it's worth remembering that using the tools of BeautifullSoup and Requests is a

good way to perform web scraping. And that saving the results in a CSV text file readable in Excel or

another application allows for more in-depth analysis of the data and information collected.

Academic Education Navigating the Path of Knowledge

Web Scraping: Data search and retrieval methodology in information science

REFERENCES

BARBOSA, A. B. G.; CAVALCANTI, A. B. Web Scraping e Análise de Dados. Anais do V

CONAPESC, Campina Grande: Realize Editora, 10 dez. 2020. Disponível em:

https://www.editorarealize.com.br/index.php/artigo/visualizar/73189. Acesso em: 13 nov. 2023.

MITCHELL, R. E. web scraping with Python: collecting more data from the modern web. Second

Edition e. Sebastopol, AC: O’Reilly Media, 2018.

MOOERS, C. N. Zatocoding applied to mechanical organization of knowledge. American

Documentation, [s.l.], v. 2, n. 1, p. 20-32, 1951. Disponível em:

https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.5090020107. Acesso em: 25 novembro de 2023.

NGA - NATIONAL GALLERY OF ARTS. Disponível em: https://www.nga.gov/, acesso em 25 de

novembro de 2023.

TAGLIAFERRI, L. How To Scrape Web Pages with Beautiful Soup and Python 3.

https://www.digitalocean.com/community/tutorials/how-to-scrape-web-pages-with-beautiful-soup-

and-python-3, Acesso em 20 de novembro de 2023.

https://www.nga.gov/
https://www.digitalocean.com/community/tutorials/how-to-scrape-web-pages-with-beautiful-soup-and-python-3
https://www.digitalocean.com/community/tutorials/how-to-scrape-web-pages-with-beautiful-soup-and-python-3

