

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

CHAPTER 61

Natural language, computational thinking, and cognitive development

https://doi.org/10.56238/sevened2023.006-061

Marcelo Magalhães Foohs
Doctor in Informatics in Education. Associate Professor,

Department of Specialized Studies

Federal University of Rio Grande do Sul

ORCID: https://orcid.org/0000-0002-4735-0732

E-mail: 00145282@ufrgs.br

ABSTRACT

In this article, we explore the programming

language as a manifestation of computational

thinking, from the translation of abstractions into

codes, so that computers can understand them.

Some key concepts, such as syntax, abstraction, and

problem-solving, are addressed, highlighting their

relationship to higher psychological functions. It

analyzes the synergistic interaction between

computational thinking and natural language,

examining how this symbiosis can influence textual

cohesion and coherence. A didactic sequence that

makes use of this synergy is presented, with

summative evaluation criteria, in which remediation

is the key piece for the transposition of linguistic

narratives to the digital world, employing the

Scratch platform as a catalyzing tool. This aims not

only to enrich students' creative expression, but also

to effectively integrate natural language,

computational thinking, and educational

technology.

Keywords: Computational thinking, Natural

language, Higher psychological functions,

Programming, Educational technology.

1 INTRODUCTION

In the Brazilian educational landscape, official tests have highlighted worrying gaps in the

development of crucial skills for students. They are not mere statistics, but reveal profound deficiencies

in textual production, in the interpretation of information and in the resolution of complex problems.

These gaps reflect a larger challenge: the lack of an integrated approach that unites the powers of

language, the logic of computational thinking, and higher cognitive functions.

This chapter sets out to explore the multifaceted intersection between programming language,

natural language, and higher cognitive functions, aiming not only to identify these gaps, but to offer

visionary solutions to fill them. Based on the theoretical foundations of renowned scholars such as

Ingedore Koch (2020), with his in-depth analysis of textual linguistics, and on Vygotsky's (2001) ideas

about higher cognitive functions, this work seeks to establish an intimate connection between

apparently distinct but intrinsically linked concepts.

Programming language, far from being just a tool for communication between humans and

computers, is the means by which we translate abstractions, logic, and algorithms into a form that

computers not only understand, but execute. It is the code of the computational mind, allowing

programmers to express their logical vision and devise solutions to complex problems.

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

In this journey of understanding, key aspects will be explored thoroughly: syntax, abstraction,

and problem-solving. Its intrinsic relationship with higher psychological functions will be highlighted,

analyzing how the synergistic interaction between computational thinking and natural language can

influence textual cohesion and coherence.

In addition, an educational approach is proposed that integrates these elements effectively,

using a didactic sequence that is based on this symbiosis. Remediation plays a key role in transposing

linguistic narratives to the digital world, including summative assessment criteria and employing the

Scratch platform as a catalytic tool. The goal is not only to enrich students' creative expression, but to

effectively integrate natural language, computational thinking, and educational technology for

students' cognitive development.

This chapter is not only a theoretical exposition, but an invitation to reflect on how the synergy

between these domains can shape a promising educational future for Brazil. We are faced with a unique

opportunity: the opportunity to redefine the educational paradigm by empowering our students to

innovate, create and solve complex problems effectively for the challenges of the 21st century.

2 METHODOLOGICAL PROCEDURES

The methodological approach adopted in this chapter follows a structured process, aiming to

provide a comprehensive and consistent understanding of the topics presented. We have divided the

structure of the chapter into distinct sections, each focusing on specific and interconnected elements

of computational thinking and its relationship to natural language.

The chapter follows a logical organization, beginning with a comprehensive introduction to

computational thinking and its relationship to programming language and natural language. From

there, each subsection was structured to explore a key concept of computational thinking, relating it

directly to practical examples in Python language. The methodology adopted involved a sequence of

demonstrations, using the programming language as a vehicle to illustrate and connect the concepts

addressed.

The choice of examples was based on their ability to elucidate theoretical concepts in a clear

and accessible way. Each example was explained in detail, emphasizing the relationships between

computational thinking and natural language elements, in order to make the content more tangible and

applicable.

The progressive construction of the examples, from subsection to subsection, allows a gradual

and in-depth exploration of the themes, promoting the progressive understanding of the content and

highlighting the interactions between the concepts presented.

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

Throughout the development, we constantly seek to contextualize the examples in the

educational scenario, demonstrating how these concepts can be applied in the learning process, aiming

to strengthen cognitive skills and the integral development of students.

This methodology was adopted with the purpose of offering a didactic structure, facilitating the

understanding and applicability of the concepts presented, in addition to promoting an integrated view

between computational thinking, natural language and cognitive development.

3 PROGRAMMING LANGUAGE: COMPUTER MIND CODE

Programming language is the means by which humans translate their abstractions, logic, and

algorithms in such a way that computers can understand and execute them. Essentially, it is the code

of the computational mind, allowing programmers to express their logical vision and create solutions

to complex problems through computational thinking strategies.

The definition of computational thinking, developed jointly by the International Society for

Technology in Education (ISTE) and the 1Computer Science Teachers Association (CSTA)

(2OPERATIONAL..., 2011), offers a comprehensive and precise description of the topic, which

includes the following characteristics: 1. Problem formulation; 2. Logical organization and data

analysis; 3. Data representation through abstractions; 4. Automation of solutions through algorithmic

thinking; 5. Identification, analysis and implementation of efficient solutions; 6. Generalization and

transference to a variety of problems.

Next, we will explore how the programming language becomes a tool for the manifestation of

computational thinking.

3.1 SYNTAX AND LOGICAL STRUCTURING

Just like natural language, where grammatical and semantic rules structure our

communications, the programming language also operates with a specific syntax. This syntax is the

structural foundation that allows programmers to express algorithms, control structures, and

programming logic in a way that is organized and understandable to computers. Let's explore how this

manifests itself in Python, a language known for its clarity and expressiveness.

The syntax in Python is notable for its simplicity and readability. It uses an approach that values

the clarity of the code, allowing you to express complex operations in a straightforward way. In the

following, we will present examples that demonstrate how logical structuring and specific syntax in

Python facilitate the expression of algorithms and mathematical operations in a concise manner.

1 International Society for Technology in Education (ISTE).
2 Computer Science Teachers Association (CSTA).

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

In the first example, Python syntax, such as the use of the "=" assignment operator, the "+"

addition operator, and the "print" function for display, allows you to clearly and directly express a

simple mathematical sum operation.

Sum of two numbers

number1 = 10

number2 = 5

soma = number1 + number2

print("The sum is:", sum)

In the second example, we use Python syntax to calculate the average of three numbers. Logical

structuring and specific syntax make it possible to perform this arithmetic operation in a concise and

understandable manner.

Calculation of the average of three numbers

number1 = 15

number2 = 20

number3 = 10

Average = (number1 + number2 + number3) / 3

print("The average is:", average)

Finally, we demonstrate the use of conditional structure in Python to check whether a number

is odd or even. The specific syntax for decision structures allows you to control the flow of the program

according to logical conditions.

Odd or even number check

number = 7

if number % 2 == 0:

print("The number is even.")

else:

print("The number is odd.")

These examples illustrate how syntax in Python enables the structured organization of

algorithms and programming logic, allowing you to express operations in an efficient and readable

manner.

3.2 ABSTRACTION AND MODULARIZATION

One of the fundamental facets of computational thinking lies in the ability to abstract complex

concepts into simpler, reusable components. The programming language offers tools for this

abstraction, allowing the creation of functions and objects that represent abstract ideas or operations.

Let's look at some examples to understand this concept more deeply.

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

Abstraction, in this context, allows you to encapsulate specific logics or operations in reusable

structures, such as functions or objects, promoting a more simplified and abstract understanding of the

problem. In a first example, we have a simple function in Python that calculates the square of a number.

The "calcular_quadrado" function abstracts the mathematical operation required to find the square of

a number, making it a modular and reusable unit.

Function for calculating the square of a number

def calcular_quadrado(number):

return number ** 2

Calling the function and printing the result

number = 8

print("The square is:", calcular_quadrado(number))

In the following second example, we demonstrate the creation of a Python class, representing

a product. This class abstracts a product's common properties and behaviors, such as name and price,

making it easier to create specific instances and reuse code.

Creating a Python class to represent a product

Product class:

def __init__(self, nome, preco):

self.nome = nome

self.preco = preco

def exibir_produto(self):

print(f"Product: {self.name}, Price: ${self.price}")

Creating an instance of the Product class and viewing its details

product1 = Product("Pen", 2.50)

produto1.exibir_produto()

Additionally, we present a function that checks whether a number is positive, negative, or zero.

This function encapsulates the verification logic and returns an abstract result based on the given

number.

Function to check if a number is positive, negative, or zero

def verificar_numero(number):

if number > 0:

return "Positive"

ELIF number < 0:

return "Negative"

else:

return "Zero"

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

Calling the function and printing the result

num = -7

print("The number is:", verificar_numero(num))

These examples highlight how abstraction and modularization in Python allow you to

encapsulate logic and operations in reusable units, promoting code reuse and making it easier to

understand complex concepts in simpler, more abstract terms.

3.3 PROBLEM-SOLVING AND LOGIC

The programming language's ability to express problem-solving through sequences of logical

instructions is critical. By creating algorithms and control structures, such as loops and conditionals,

programmers translate their logical reasoning ability into computational actions. Let's explore some

examples that highlight this relationship between problem solving and logic in Python.

Logic in programming allows the creation of sequences of commands that guide the behavior

of the program according to specific conditions, reflecting human logical reasoning in computational

actions. In a first example, we demonstrate the use of a conditional structure to identify the largest

number between two values. The logic of the "if-else" structure allows for the comparison of variables

and decision-making based on logical conditions.

Identification of the largest number between two values

number1 = 15

number2 = 20

If number1 > number2:

print("The largest number is:", number1)

else:

print("The largest number is:", number2)

In the second example below, we use a "for" loop to print the even numbers from 1 to 10. Using

the repeating structure allows you to perform a repetitive action based on logical conditions.

Loop for to print the even numbers from 1 to 10

for i in range(1, 11):

if i % 2 == 0:

print(i, end=" ")

Finally, we present a conditional framework that verifies the age for access to restricted content.

This condition-based verification demonstrates the rationale behind conditional decisions in programs.

Age verification for access to restricted content

age = 17

if age >= 18:

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

print("Access granted to restricted content.")

else:

print("You are not old enough to access this content.")

These examples aim to illustrate how the programming language allows you to express

problem-solving logic through structured algorithms, using conditional and repetition structures to

make decisions and perform actions in an automated and logical manner.

4 COMPUTATIONAL THINKING, HIGHER PSYCHOLOGICAL FUNCTIONS, AND

EDUCATION

In addition to serving as a code for the computational mind, the programming language,

structured by computational thinking strategies, is intrinsically linked to higher psychological

functions, and can promote their development and improvement. Higher psychological functions, as

conceived by Vygotsky (2001) and Vygotsky, Luria and Leontiev (2010), which include conceptual

thinking, voluntary memory, attention, problem solving, planning and self-regulation, imagination and

creativity, are important for the cognitive development of the student and for coping with complex

challenges in the digital age.

That said, some examples in Python will be briefly presented below, which exemplify the

relationship between computational thinking strategies and higher psychological functions. In

addition, it is important to point out that Vygotsky (2001, p. 65), in his book Thought and Language,

draws attention to the fundamental role of education in the relationship between learning and cognitive

development:

Our second series of investigations focused on the temporal relationships between teaching

processes and the development of the psychological functions that correspond to them. We

have found that teaching often precedes development. The child acquires certain habits and

qualifications in a given domain before he learns to apply them consciously and deliberately.

There is never a complete parallel between the course of teaching and the development of the

corresponding functions.

It is interesting to note how this quote from Vygotsky (2001) reinforces the importance of

education in this process, highlighting the relationship between learning and cognitive development.

The following Python language examples can serve as a bridge between the theoretical concepts of

higher psychological functions and their practical application in the educational context. Each example

presented offers a tangible demonstration of how computational thinking strategies intertwine with

fundamental cognitive skills such as problem-solving, planning, and self-regulation, promoting not

only theoretical understanding but also the concrete application of these concepts in the educational

setting.

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

4.1 CONCEPTUAL THINKING

Conceptual thinking involves the ability to understand and manipulate abstract concepts. In

programming, students apply computational thinking strategies when dealing with concepts such as

variables, functions, and control structures. Let's explore some examples that demonstrate the practical

application of this thinking in the Python language.

Conceptual thinking in programming refers to the ability to work with abstract concepts in

order to solve problems and create solutions using logical structures and specific operations. In the

following first example, we present a function that calculates the volume of a cube based on the size

of the given side. Here, the manipulation of the geometric concept of volume by means of the function

abstracts the mathematical formula, evidencing conceptual thinking in the direct application of

mathematical formulas.

Function to calculate the volume of a cube

def calcular_volume_cubo(side):

return lado ** 3

Calling the function and printing the result

lado_cubo = 5

print("The volume of the cube is:", calcular_volume_cubo(lado_cubo))

In the second example, we have a function that checks whether a number is positive or not. The

manipulation of the concept of positivity by means of a function abstracts logic from verification,

showing conceptual thinking in the application of conditional logic.

Creating a function to check if a number is positive

def verificar_positivo(number):

if number > 0:

return True

else:

return False

Checking if a number is positive and printing the result

num = -7

if verificar_positivo(num):

print("The number is positive.")

else:

print("The number is not positive.")

Finally, we introduce the use of lists in Python to store elements and access them through

indexes. This manipulation of the concept of lists exemplifies how students can work with abstract

data structures to manipulate information in an organized manner.

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

Use of lists to store elements and manipulate data

lista_frutas = ['Apple', 'Banana', 'Orange', 'Strawberry']

print("The third fruit on the list is:", lista_frutas[2])

These examples aim to illustrate how conceptual thinking manifests itself in programming,

allowing students to manipulate and apply abstract concepts to solve problems and create solutions in

Python.

4.2 VOLUNTARY MEMORY

Voluntary memory refers to the ability to store and access information consciously and

intentionally. In programming, the organization and structuring of information are fundamental for the

construction of efficient algorithms. Let's explore below examples that illustrate how programming

encourages the use of voluntary memory, enabling learners to store and access information consciously.

Voluntary memory in programming is related to the ability to store and retrieve information in

an intentional way, using specific data structures and concepts. In this first example, we demonstrate

the use of a Python dictionary to store contacts and their associated emails. This structure allows

conscious access to information through keys, exemplifying voluntary memory in the organization and

direct access to data.

Storing contacts in a dictionary

agenda_contatos = {

'John': 'joao@email.com',

'Maria': 'maria@email.com',

'Carlos': 'carlos@email.com'

}

Accessing a contact's email

print("John's email:", agenda_contatos['John'])

In the second example, we have variables that store data about the state of a game, such as

score, lives, and current level. This intentional manipulation of variables to update and display

information evidences voluntary memory in programming.

Using variables to store data from a game

Score = 1500

lives = 3

nivel_atual = 5

Updating and displaying the gamerscore's score

Score += 500

print("New Score:", Score)

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

Finally, we present a function that calculates the total monthly expenses based on a list of

values. The intentional use of the function to store calculations exemplifies how voluntary memory is

applied in the reuse of solutions to solve similar problems.

Using a function to store monthly expense calculations

def calcular_despesas_mensais(expenses):

total_despesas = sum(expenses)

return total_despesas

Calling the function and displaying the total monthly expenses

despesas_janeiro = [1000, 1500, 800, 2000]

total = calcular_despesas_mensais(despesas_janeiro)

print("Total expenses in January:", total)

These examples demonstrate how voluntary memory manifests itself in programming, allowing

learners to intentionally store and access information to solve problems and organize data in Python.

In addition, it is important to point out that, just like other higher psychological functions, voluntary

memory can be developed with regular practice and exercise.

The practice of consciously manipulating information in programming not only strengthens

technical skills but also has a significant impact on learners' cognitive development. By practicing data

organization and problem-solving through programming, students not only improve their critical

thinking skills but also strengthen volunteer memory, a crucial skill in many aspects of life.

Specifically in the educational context, this practice of developing voluntary memory through

programming can be highly beneficial. It is not limited to improving students' technical skills, but also

contributes to improving their ability to learn and solve problems in a variety of disciplines.

By integrating volunteer memory development into programming as part of the educational

curriculum, we are not only empowering students to deal with future technological challenges, but also

strengthening their overall cognitive skills. This type of educational approach not only prepares

students for the digital age but also equips them with essential cognitive tools to tackle varied

challenges throughout their academic and professional lives.

4.3 ATTENTION AND FOCUS ON PROGRAMMING

Attention is the ability to focus on a specific task while avoiding distractions. In programming,

this aspect is crucial, requiring sustained attention to understand and solve complex problems. Let's

explore below examples that illustrate how programming strengthens the ability to sustain attention

and focus.

The ability to maintain attention is essential in solving programming problems. Learners need

to focus on logic, break down challenges into manageable chunks, and develop strategies to find

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

solutions. In this first example, we have a program that checks if a number is prime. Attention is

required to understand the logic behind the algorithm, following each step of the iteration to check if

the number is divisible by some number other than 1 and itself.

Creating a program that checks if a number is prime

def verifica_primo(number):

IF number > 1:

for i in range(2, numero):

if (number % i) == 0:

return False

return True

return False

Checking if a number is prime

num = int(input("Enter a number to check if it's prime: "))

if verifica_primo(num):

print(num, "is a prime number.")

else:

print(num, "is not a prime number.")

In the second example, we have a binary search algorithm on an ordered list. Attention is crucial

to understanding the logic behind binary search, following each iteration of the loop, and understanding

how the algorithm efficiently finds the desired item in the list.

Crafting a binary search program on an ordered list

def busca_binaria(list, item):

low = 0

high = len(list) - 1

while baixo <= alto:

middle = (low + high) // 2

Kick = list[middle]

if chute == item:

return half

if chute > item:

High = Medium - 1

else:

low = middle + 1

return None

Using binary search

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

minha_lista = [1, 3, 5, 7, 9]

print("Number 5:", busca_binaria(minha_lista, 5))

These examples show how attention is key in programming. Developing this skill not only

helps students solve complex problems in programming, but also strengthens their ability to focus and

concentrate, which are essential skills for the educational process. Programming not only challenges

them cognitively but also prepares them to maintain attention on challenging tasks, contributing

positively to their educational development.

4.4 TROUBLESHOOTING

Problem-solving is an essential skill for finding effective solutions to complex challenges. In

programming, this skill is constantly exercised, driving strategic thinking and creativity in the search

for innovative solutions. Let's explore some examples that illustrate this ability to solve problems

effectively in Python.

Programming provides an environment conducive to the development of problem-solving. By

tackling algorithmic challenges, learners not only implement solutions but also enhance their ability to

think creatively and efficiently to solve problems. In the first example presented below, we have a

sequential search algorithm on a list. Problem-solving is applied by creating an efficient algorithm to

find a specific item in the list, iterating through each element until it is found.

Example 1: Implementing a Sequential Search Algorithm on a List

def busca_sequencial(list, item):

for i in range(len(lista)):

if lista[i] == item:

return i

return None

Using sequential search

minha_lista = [6, 2, 8, 5, 3, 9]

print("Number 5:", busca_sequencial(minha_lista, 5))

In the second example, we have a program that calculates the factorial of a number. Here,

problem solving is reflected in the creation of an efficient algorithm to calculate the factorial, applying

the mathematical logic necessary for this task.

Developing a program that calculates the factorial of a number

def calcular_fatorial(number):

if numero == 0 or numero == 1:

return 1

else:

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

factorial = 1

for i in range(2, numero + 1):

fatorial *= and

return fatorial

Calculating the Factorial of a Number

n = 5

print("The factorial of", n, "is", calcular_fatorial(n))

These examples highlight how problem-solving in programming goes beyond simply

implementing code. The development of this skill provides students with the ability to face challenges

in a strategic manner, a valuable skill for the educational process. By integrating problem-solving

through programming into the educational curriculum, we are not only teaching the programming

language but also strengthening students' ability to approach complex problems creatively and

effectively. This skill goes beyond the technical domain, being a valuable tool for cognitive

development and the ability to find innovative solutions in various areas.

4.5 PLANNING AND SELF-REGULATION

Planning and self-regulation are fundamental skills for programmers, as they enable the

development of efficient plans and the ability to adjust the behavior of the code according to those

plans. Next, we'll explore examples that illustrate how these concepts apply in programming using the

Python language.

In programming, planning means not only creating code that performs a specific task, but also

anticipating possible scenarios and errors that may arise during execution. Self-regulation refers to the

ability to make adjustments, corrections, and improvements to the code, ensuring predictable and

efficient behavior. In the first example presented, we created a simulated login system where you can

verify that the username and password match the registration. The application of planning occurs by

considering the possibility of error when inserting a non-existent user, and it is essential to predict and

treat this situation.

Example 1: Implementing an Error-Handling Login System

usuarios_registrados = { user1': 'senha1', 'user2': 'senha2'}

def fazer_login(user, password):

try:

if usuarios_registrados[user] == Senha:

return True

else:

return False

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

except KeyError:

print("User not found!")

return False

Trying to log in

login = fazer_login (user1', 'senha1')

print("Login:", login)

In the second example, we illustrate a program that validates user input to ensure that it is a

number between 1 and 100. Here, self-regulation occurs by incorporating mechanisms to handle

invalid inputs, ensuring that the program functions properly even in the face of potential errors.

Developing a program to validate data entry

def validar_entrada(number):

try:

if int(numero) > 0 and int(numero) <= 100:

return True

else:

return False

except ValueError:

print("Please enter a valid number.")

return False

Validating User Input

entrada_valida = validar_entrada('50')

print("Valid ticket:", entrada_valida)

These examples show how planning and self-regulation in programming go beyond simple

coding. By integrating these skills into the educational context, in addition to learning to write code,

students also develop the ability to anticipate scenarios, plan solutions, and correct mistakes,

fundamental skills for solving complex problems in various areas of life and learning.

4.6 IMAGINATION AND CREATIVITY

Imagination and creativity are fundamental in the world of programming, providing the ability

to conceive innovative ideas and explore various possibilities. In the practice of programming, students

have the opportunity to exercise their imagination, creating programs and projects that go beyond

simple logical functioning. Let's explore below some examples to illustrate how programming can

encourage imagination and creativity using the Turtle library in Python.

In programming, imagination translates into the ability to visualize solutions or concepts, while

creativity manifests itself in the way these ideas are applied in a unique and innovative way. In this

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

first example below, we use the Turtle library to draw a colorful kaleidoscopic pattern. The goal is to

highlight how students can express their imagination visually, creating something aesthetically

appealing based on programming logic.

Creating a Drawing with the Turtle Library

from turtle import *

speed(10)

bgcolor("black")

colors = ["red", "orange", "yellow", "green", "blue", "purple"]

for x in range(360):

pencolor(colors[x % 6])

width(x / 100 + 1)

forward(x)

left(59)

done()

In the second example, we've created a simple game of clicking on the screen. Here, students'

creativity comes into play as they develop the logic behind an interactive game, exploring not only

visual drawing ability, but also the user's interaction with the program.

Creating a simple game with the Turtle library

from turtle import *

speed(0)

bgcolor("black")

color("white")

hideturtle()

def desenhar_borda():

penup()

goto(-140, 140)

pendown()

for side in range(4):

forward(280)

right(90)

left(90)

penup()

goto(0, 0)

pendown()

setheading(0)

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

desenhar_borda()

write("Click inside the area to start the game.", align="center", font=("Arial", 16,

"normal"))

def click(x, y):

goto(x, y)

dot(20)

onclick

done()

These examples illustrate how coding can be a fertile field for students' imagination and

creativity. By introducing this approach into education, we are not only developing technical skills,

but also fostering the ability to solve problems, innovate, and express ideas. These skills are essential

for forming responsible and engaged citizens in today's society, enabling them to find creative solutions

to complex challenges and to contribute meaningfully to the world we live in.

5 COMPUTATIONAL THINKING AND NATURAL LANGUAGE DEVELOPMENT

The interplay between computational thinking and natural language enhancement represents a

deep and enriching symbiosis. Not only does it strengthen language comprehension, but it also directly

influences the way we structure, interpret, and utilize language in our daily communication. By

applying the principles of computational thinking, we immerse ourselves in a world of logic,

abstraction, and problem-solving that has a significant impact on improving human language.

The contribution of computational thinking to natural language is not just limited to textual

expression. It extends to how we organize our thoughts, structure our ideas, and communicate

information in a cohesive and coherent way. Textual cohesion and coherence, identified by Beaugrande

and Dressler (1981) as central elements in natural language, is a key point to be explored. By

unraveling how computational thinking intertwines with these elements, we delve not only into the

analysis of linguistic structures, but also into understanding how computational logic can enhance the

clarity, effectiveness, and efficiency of written and spoken communication.

In the course of this section, we will take a closer look at how the principles of computational

thinking intertwine with natural language, looking at how their applications can enrich understanding

and communication in the linguistic context.

5.1 COHESION: THE LOGICAL INTERACTION OF TEXTUAL ELEMENTS

Textual cohesion refers to the way elements of a text logically connect together. In the world

of programming, computational thinking is a powerful catalyst for cohesion, requiring programmers

to organize their code in a logical and structured way. This practice is not only applicable to

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

programming, but is also valuable in natural language, as the ability to structure ideas in a logical and

sequential manner is strengthened through computational thinking, resulting in greater textual

coherence and clarity.

Exploring this relationship further, let's go into some examples that illustrate the

interconnection between computational thinking and natural language, focusing on the cohesion of

textual elements. Cohesion plays a crucial role in both programming and written communication,

ensuring clarity and understanding of what is expressed. In the first example below, the

"calcular_media" function is created to calculate the average of a list of numbers. Logic is essential:

you add up the elements of the list, calculate the number of elements and, finally, calculate the average.

Example of a function to calculate the average of a list of numbers

def calcular_media(list):

soma = sum(list)

quantity = len(list)

Average = Sum / Quantity

return media

List of numbers

numbers = [10, 15, 12, 18, 20]

Calling the function to calculate the average

media_calculada = calcular_media(numbers)

Displaying the average

print("The average of the numbers is:", media_calculada)

In the second example presented below, a sentence is manipulated using Python. The sentence

is broken down into words, and then the order of those words is reversed, demonstrating a logical

textual manipulation.

Example of text manipulation in Python

sentence = "Computational thinking strengthens textual cohesion."

words = sentence.split() # Dividing the sentence into words

reverse = ' '.join(words[::-1]) # Reversing word order

Displaying the sentence reversed

print("Inverted sentence:", reverse)

In the third example presented below, a dictionary is used to organize information about a

student, showing how logical structure is applied in organizing data.

Example of organizing information in a Python dictionary

student = {

"name": "Mary",

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

"Age": 22,

"course": "Computer Science",

"Notes": [8.5, 9.0, 7.8, 9.5]

}

Displaying student information in an organized manner

print(f"{student['name']}, {student['age']} years, from {student['course']}, grades:

{student['grades']}")

These examples suggest that computational thinking, by requiring a logical and organized

structure, strengthens the understanding of the use of cohesion in both programming and natural

language. Cohesion is a vital skill not only for code, but also for textual clarity and comprehension in

our everyday communication, playing a crucial role in developing individuals who are able to

contribute effectively to society.

5.2 COHERENCE: SEMANTIC HARMONY IN THE TEXT

Textual coherence involves the construction of an overall and logical meaning in a text.

Computational thinking, by stimulating the organization and logical connection of concepts, can assist

in the creation of coherent texts in natural language. Programmers, when developing algorithms and

logical structures, develop the ability to maintain semantic coherence in their codes. This ability is

transferable to natural language, resulting in texts in which ideas connect in logical and meaningful

ways.

Let's look at some examples of this interconnection between computational thinking and natural

language, with a focus on the coherence of textual elements. In the first example, the 'e_palindromo'

function checks whether a word is a palindrome, i.e. whether it is read the same way backwards.

Logical coherence lies in the comparison between the original word and its inverted version, reflecting

the need for a coherent structure to establish meaning in natural language.

Palindrome Function Example

def e_palindromo(word):

return word == word[::-1]

Checking if a word is a palindrome

result = e_palindromo("recognize")

If result:

print("It's a palindrome.")

else:

print("It's not a palindrome.")

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

In the second example, the 'ordenar_numeros' function arranges a list of numbers in ascending

order. Logical coherence lies in using the ordering method, ensuring that the numbers are in a logical

sequence. This reflects the need for cohesive and coherent organization to convey ideas logically in

natural language.

Example function sort numbers

def ordenar_numeros(list):

return sorted(list)

Sorting a list of numbers

numbers = [8, 3, 5, 1, 9, 4]

lista_ordenada = ordenar_numeros(numbers)

print("Sorted list:", lista_ordenada)

In the third example, the 'fibonacci' function generates the Fibonacci sequence based on the

number of terms specified. Logical coherence lies in the mathematical recursion used to generate the

sequence, ensuring that each number is the coherent result of the sum of the previous two. This reflects

the coherent structure required to convey complex information in natural language.

Fibonacci Function Example

def fibonacci(n):

if n <= 1:

return n

else:

return fibonacci(n - 1) + fibonacci(n - 2)

Generating the Fibonacci sequence

terms = 10

sequencia = [fibonacci(i) for i in range(termos)]

print("Fibonacci sequence:", sequence)

By highlighting the logical coherence present in Python code examples, it reinforces the

relevance of computational thinking in the development of coherence in both programming and natural

language. This connection illustrates how the practice of computational thinking can strengthen the

understanding and application of the elements of cohesion and coherence in human communication.

6 PROPOSAL OF A DIDACTIC SEQUENCE WITH THE USE OF SCRATCH

The synergy between natural language and computational thinking, as discussed earlier, shows

great promise in the development of higher psychological functions. Natural language, used for human

expression and communication, and computational thinking, with its abilities of decomposition,

abstraction, pattern recognition, and algorithms, have the potential to reinforce each other. This, in

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

turn, amplifies creativity, problem-solving, and understanding of complex concepts. In this context, a

didactic sequence centered on remediation is proposed, using it as an axis to transform narratives

constructed in natural language into interactive digital narratives, employing computational thinking

strategies and the Scratch platform.

Remediation, as proposed by Bolter and Grusin (2000), refers to the process by which new

media incorporate and reconfigure the characteristics of previous media. It is a concept that underlines

the continuous interaction between different forms of communication and their mutual influences,

resulting in new forms of expression. From an educational perspective, remediation can be seen as an

opportunity to integrate natural language and computational thinking, expanding pedagogical

possibilities.

6.1 VISUAL PROGRAMMING LANGUAGE SCRATCH

Scratch is a visual programming platform developed by MIT (Massachusetts Institute of

Technology) to teach programming concepts in an accessible and fun way. It is designed to be used by

children, young people, and programming beginners, offering an intuitive interface based on blocks of

code, which makes it more attractive compared to traditional programming languages.

Scratch allows users to create interactive projects, such as animations, games, stories, and more,

without the need to write complex code. Its graphical interface utilizes colorful command blocks that

fit together like puzzle pieces, making it easy to create sequences of actions. Command blocks

represent different operations such as movement, appearance, sound, controls, and variables. For

example, there are blocks for moving characters, playing sounds, changing colors, and controlling the

flow of the program.

Figure 1 – Blocks to move and change color.

Source - Own

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

In addition, Scratch allows you to create actors and backgrounds to compose scenes. Actors

can be customized with their own images, sounds, and animations. The Scratch canvas is divided into

two main areas: the programming area, where blocks are dragged to create scripts, and the stage, where

projects are executed. Projects in Scratch can respond to events such as clicks and keystrokes. This

allows programs to react to the user's actions.

Figure 2 – Event Response

Source – Own

Scratch also allows the use of variables to store information and control the behavior of

programs. In the example below, Score is the variable that is modified when the character touches the

ball.

Figure 3 – Variable Modification

Source – Own

Finally, Scratch offers a series of visual and interactive resources that help users understand the

principles of programming in a practical and engaging way, promoting creativity and logical thinking.

6.2 PROPOSAL FOR DIDACTIC SEQUENCE

This didactic sequence proposal aims to amplify the benefits of the synergy between

computational thinking, natural language and higher psychological functions. Considering the

characteristics of Scratch, it is natural to anticipate that, during the remediation process, the language,

initially written in accordance with standard norms, will undergo substantial transformations. This will

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

result in the adoption of a linguistic variant more appropriate to the new digital environment of

narrative, thus promoting the concept of pedagogy of linguistic variation, as highlighted by Faraco

(2015). This, in turn, supports the importance of a pedagogical approach to the Portuguese language

that is fully aware of the sociolinguistic communicative context. From this perspective, the following

didactic sequence is proposed:

1. Introduction to the concept of remediation and computational thinking: Introduce students

to the concept of remediation, highlighting its relationship with the evolution of media and

the interaction between natural language and computational thinking. Introduce the

fundamental principles of computational thinking, such as: decomposition, abstraction,

pattern recognition, and algorithms.

2. Natural Language Narrative Analysis: Encourage students to explore traditional and/or

authorial narratives, identifying narrative elements, characters, plot, and key points.

Analyze the structures and techniques of storytelling, taking into account the

psycholinguistic and emotional aspects of the characters. Introduce the scripting process

as an integral part of transposing natural language text into an interactive digital narrative,

using Scratch.

3. Scripting and transposition to interactive digital narratives: Explain the importance of

scripting in the transformation of natural language narratives to interactive digital

narratives in the Scratch environment. Present the Scratch software as a tool for building

interactive digital narratives. Assist students in translating the elements of linguistic

narratives into computational language, adapting and recreating the story interactively.

4. Development of interactive narratives: Guide students in the creation of their own projects

in Scratch, integrating elements of the adapted linguistic narrative. Actively stimulate the

application of computational thinking, to solve challenges and create interactivity in the

narrative, taking into account the previously developed script.

Considering that the proposed didactic sequence integrates three essential components: natural

language text, remediation process and interactive digital narrative, and that its main objective is the

cognitive development of students, some criteria for the final evaluation will be presented below:

1. Fidelity to the original narrative: Evaluate the fidelity in transposing the fundamental

elements of the natural language narrative to the digital format, ensuring the cohesion of

the story during the adaptation.

2. Creativity in adaptation and innovation: Evaluate creativity in reinterpreting and adapting

narrative into an interactive form, taking into account the innovations and resources used

to make digital storytelling unique and engaging.

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

3. Efficiency in the use of Scratch software: Evaluate the ability of students to efficiently use

Scratch features to create interactivity and captivate the target audience, ensuring a fluid

and attractive experience.

4. Proficient application of computational thinking: Evaluate the sound application of

computational thinking principles, such as: decomposition, abstraction, pattern

recognition, and algorithms, during the development of interactive digital storytelling,

demonstrating understanding and skill in applying these principles.

The integration of remediation with the proposed pedagogical approach offers a valuable

opportunity for the enrichment of the educational experience, uniting human expression through

natural language with the creative power of computational thinking. This didactic sequence provides

a solid framework for the exploration of these concepts, encouraging the creation of interactive digital

narratives that not only broaden the understanding and application of computational thinking, but also

enrich students' creative expression. This process, therefore, promotes the cognitive development of

students in a comprehensive way.

That said, it is essential to highlight how this didactic sequence proposal, with the use of

Scratch, goes beyond the integration between natural language and computational thinking. It becomes

a key pillar in strengthening students' capacities to understand and apply essential skills for problem-

solving and creative expression. By entering the world of Scratch, students are not only learning how

to use a tool; are immersed in a visual programming language that allows the construction of interactive

narratives. This hands-on approach provides them with a significant opportunity to:

1. Think algorithmically: The block structure in Scratch teaches students how to think in

logical sequences of actions. By organizing commands in a logical way to create desired

interactions, they develop the ability to break down problems into smaller, solvable steps.

2. Abstract and recognize patterns: While creating projects in Scratch, students identify visual

and functional patterns in the programming blocks. This helps in understanding concepts

such as repetition, conditionals, and loops, empowering them to abstract these patterns for

application in different contexts.

3. Solve problems creatively: The Scratch platform fosters creativity by allowing students to

express their ideas interactively. They are challenged to find original solutions to

implement functionalities, promoting creativity in problem solving.

4. Enhance communication and expression skills: By transforming narratives into interactive

projects, students are encouraged to express their ideas clearly and cohesively, applying

natural language concepts in the construction of digital stories.

In this way, this approach is not limited to learning programming. It provides a unique

opportunity for students to develop foundational skills for computational thinking while promoting

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

creative expression and problem-solving in innovative and meaningful ways. This integration of

remediation, natural language, and computational thinking not only enriches the educational

experience but also prepares students to meet the challenges and explore the opportunities of the

modern world.

7 CONCLUSION: A SYNERGY AND A SYMPHONY

In our immersion into the depths of the synergy between natural language and computational

thinking in this chapter, we explore the intricate pathways that intertwine the expressive richness of

human communication with the structured logic of computational thinking. The proposal of a didactic

sequence involving the remediation and exploration of Scratch represents more than a simple dive into

visual programming; It is a profound journey into educational potential that expands the conventional

horizons of the classroom.

We begin our journey with an invitation to a linguistic metamorphosis. Entering the universe

of computational thinking, we present the fundamental pillars: decomposition, abstraction, pattern

recognition, and algorithms. These principles are not just tools for solving logical challenges; They are

instruments that enhance the capacity for analysis, creation and innovation. And it is at the intersection

of these principles with natural language that the foundations of our educational proposal lie.

Our starting point for the proposed didactic sequence was the thorough analysis of natural

language narratives, inviting students to explore the complexities of human expression. This dive

allows you to identify narrative elements, understand emotional and psycholinguistic structures, being

the first chords of this educational symphony. This thorough analysis lays the groundwork for the next

step: the journey of screenwriting, intertwined with the potential of Scratch. Here, students not only

translate, but reinvent narratives, adapting them to the emerging digital landscape, thus nurturing the

richness of linguistic variation suggested by Faraco (2015). This natural transition allows the universe

of natural language to merge harmoniously with the innovative and creative possibilities provided by

the digital environment. Scratch, in this panorama, outlines a path where creativity and computational

thinking converge harmoniously. Through its colorful blocks, students transform ideas into visual

interactions, applying the principles of computational thinking in a practical and engaging way. Every

line of code in Scratch is a verse, and every project is a unique work, a digital expression of remediated

narratives.

By exploring the development of interactive storytelling, we not only encourage the application

of computational thinking, but also the flourishing of creativity. Students become protagonists, creators

of their own digital stories, where each challenge overcome is a harmonious note in the melody of

learning.

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

The final evaluation is not a judgment, but an invitation to reflection. Fidelity to the original

narrative, creativity in adaptation, efficiency in the use of Scratch and proficient application of

computational thinking are criteria that seek not only to measure, but to illuminate progress,

recognizing not only the result, but the path taken by the learners.

In this world where the interaction between natural language and computational thinking is

essential, our pedagogical proposal proves to be a unique educational soundtrack. It invites educators

to become conductors, students to become composers, transforming the classroom into a stage of

expression, learning, and discovery.

This chapter is not only a point of arrival, but a starting point for an educational approach that

transcends paradigms. The synergy between natural language, computational thinking and education

is the symphony that resonates in building citizens of the future, creative, innovative and endowed

with the unique ability to translate thoughts into digital language.

Ultimately, this chapter presents itself not only as a contribution to research, but as a practical

and valuable tool for educators seeking to enrich their pedagogical practices. The proposal is not just

theory; it is an invitation to transformation, to the creation of educational experiences that echo beyond

the confines of classrooms, shaping minds for the challenges and opportunities of the 21st century.

May this educational symphony inspire, delight and guide the steps of all those involved in the art of

educating.

Harmony of Knowledge Exploring Interdisciplinary Synergies

Natural language, computational thinking, and cognitive development

REFERENCES

BEAUGRANDE, Robert-Alain de; DRESSLER, Wolfgang Ulrich W. Introduction to text linguistics.

Tübingen, Germany: Max Niemeyer, 1981.

BOLTER, Jay David; GRUSIN, Richard. Remediation: Understanding new media. Cambridge,

Massachusetts: MIT Press, 2000.

FARACO, Carlos Alberto. Norma culta brasileira: construção e ensino. In: ZILLES, Ana Maria Stahl;

FARACO, Carlos Alberto (org.). Pedagogia da variação linguística: língua diversidade e ensino. São

Paulo: Parábola Editorial, 2015. p. 19-30.

KOCH, Ingedore. Introdução à linguística textual. São Paulo: Contexto, 2020.

OPERATIONAL Definition of Computational Thinking – for K-12 Education. [S. l.]: NSF; ISTE;

CSTA, 2011. Disponível em: https://cdn.iste.org/www-

root/Computational_Thinking_Operational_Definition_ISTE.pdf. Acesso em: 28 set. 2023.

VIGOTSKY, Lev Semenovich. Pensamento e Linguagem. São Paulo, SP: Ícone, 2001. E-Book. Edição

eletrônica: Ed. Ridendo Castigat Mores. Disponível em: www.jahr.org. Acesso em: 26 out. 2023.

VIGOTSKY, Lev Semenovich; LURIA, Alexander Romanovich; LEONTIEV, Alex N. Linguagem,

desenvolvimento e aprendizagem. Tradução: Maria da Pena Villalobos. 11. ed. São Paulo, SP: Ícone,

2010. (Coleção Educação Crítica).

