

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

CHAPTER 64

Proposal for requirements traceability in distributed agile teams

https://doi.org/10.56238/uniknowindevolp-064

Rafael Augusto Paggi Diomedesse
Course Technology in Systems Analysis and

Development – Federal Institute of Mato Grosso – IFMT

– São Vicente Campus.

E-mail: rafael_paggi@hotmail.com

Libia de Souza Boss Cunha
Course Technology in Systems Analysis and

Development – Federal Institute of Mato Grosso – IFMT

– São Vicente Campus.

E-mail: libia.boss@svc.ifmt.edu.br

ABSTRACT

This article aims to present an experience report on

the configuration of an automated management

tool, Jira Confluence, for documentation and

requirements management, throughout the software

lifecycle using agile teams, in addition to clarifying

concepts about the Traceability of requirements and

situate through examples why standardize and

centralize them, Especially when we're talking

about distributed teams.

Keywords: Scrum, Agile Development,

Traceability and Agile Methodology.

1 INTRODUCTION

Nowadays it is possible to observe in a remarkable way that a significant and growing number

of companies around the world have been distributing their software development processes as a

competitive strategy associated with cost, quality and flexibility [Santos, et al.]. In this context, Scrum

presents a great growth over other methodologies, because they have the ability to reduce risks of

failures, provides fast deliveries, deals with scope changes easily, in addition to other reasons such as

the reduction of bureaucracy of activities and iterative communication between the client and the team

[Sabbagh, 2013].

Scrum focuses on people and is suitable for projects where requirements are changeable in the

course of development. This methodology has practices and techniques that fit easily in distributed

teams, because it has a great adaptability that will be described soon in this article.

The process of elicitation and analysis of requirements in Scrum teams encounters some

challenges, such as customer availability, cross-functional team, neglect of non-functional

requirements, lack of formal documentation, among other reasons [Soares 2013].

Many factors hinder the process of analyzing requirements in distributed teams, among them:

physical separation and time zone. However, distributed agile teams can achieve the productivity of a

physically united team [Cohn 2012], but for this to happen the process must be integrated from the

requirements gathering. A major barrier in distributed teams is the collection of requirements and the

way they are made available to the team.

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

This paper aims to present an experience report of configuring an automated management tool,

Jira Confluence, for documentation and requirements management, throughout the software lifecycle

using agile teams. The software was used in order to manage the collection, storage and maintenance

of the requirements agreed between the stakeholders (strategic public), in addition to managing the

changes that occurred in the requirements, due to its natural evolution and to track the relationships

between requirements and between requirements documents.

The target company of this work, provides software development services to companies in the

public and private sectors. Using the agile methodology Scrum and has been in the market for about

ten years consolidating with the successful completion of several projects. The configuration of the

Jira Confluence software in order to meet the requirements management in agile projects carried out

by this company arose from the maturation that was obtained through problems visualized in

previously developed projects. It is expected to report, contribute and foster the discussion of good

work practices regarding the management of requirements carried out in the current market.

2 AGILE SCRUM METHODOLOGY

Due to the presentation of positive results in relation to the use of agile methodologies, more

and more software houses have been seeking these methodologies for application in software projects.

Among the options is Scrum, according to Versionone, [2008] 70% of companies that use some agile

methodology opt for Scrum. Scrum is a flexible framework, focused on teamwork and used for the

incremental and iterative development of any product [Collins, et al., 2010].

It is considered a great solution for companies looking for fast and functional deliveries, in

addition to the detachment of initial documentation. This methodology has three features that are

considered by Sutherland [2013] as pillars of it: transparency, inspection and adaptation.

Transparency refers to the knowledge of the significant aspects of the process, which all those

responsible must possess [Vieira 2016]. Silva, et al. [2009] reports transparency as the guarantee of

clarity of project results for both parties (company and client). Inspection is the continuous

performance of monitoring and testing that focus on finding variations of the functionality

specification, thus avoiding problems of expectation breakage and refactoring of the same. Cruz [2013]

points to inspection as essential and states that sufficient inspections must be made for variations to be

found.

After inspections and found variations, the adjustment of the deviation outside the acceptable

limits should be immediate [Vieira, 2016]. Changes deemed necessary should be allowed and executed

in the product backlog [Silva, 2017]. The changes necessary for the functionality to return within a

limit of acceptable changes should be executed as soon as possible so that future deviations are

minimized [Cruz, 2013].

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

2.1 ROLES AND RESPONSIBILITIES

For the concept of the three pillars to be solid, Scrum consists of a set of small teams that have

responsibilities for events that rely on the use of specific artifacts for support and apply rules according

to the roles assigned to each team participant [Cruz, 2013]. In the Scrum framework there are 3 roles

which are:

• Product Owner: Product owner.

• Scrum Master: Member of the team responsible for managing the project and leading the

Scrum Meetings. Despite having special functions vis-à-vis the other members of the

project, the Scrum Master does not have authority over other members of the team [Bissi,

2007], [Pedro, et al. 2016] completes by saying that the Scrum Master is the guardian of

the Scrum processes.

• Development Team: The project development team consists of 3 and a maximum of 9

people with self-management characteristics [Pedro, et al., 2016].

Figure 1 – Scrum Roles

3 AGILE REQUIREMENTS MANAGEMENT

Requirements management deals with the management and control of system need

(requirements) including the traceability of requirements and their changes as they evolve [Molinari,

2008]. This management is fundamental for a software to have QA (Quality Assurance), because the

requirements without proper management, or worse, without any management, directly impact the

quality, time and expectation of the functionality delivered.

The requirements gathering has an important role in the construction of a software because it

is the beginning of all project activity. One of the reasons for user dissatisfaction is the lack of an

adequate requirements survey [Mendonça, 2014].

As stated by Dimes [2014], many startup companies find it difficult to deliver functional

prototypes on time, because there is no control over specific deadlines for small tasks. In addition, they

underestimate large tasks and only focus on them when it is close to the deadline. With this is generated

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

a wear and tear that causes loss of deadlines or delivery of features with unsatisfactory quality. Dimes

[2014] concludes by saying that companies that started using Scrum, realized quality and punctuality

in addition to more productive developers.

The process of elicitation and analysis of requirements in Scrum teams encounters some

challenges, such as customer availability, cross-functional team, neglect of non-functional

requirements, lack of formal documentation, among other reasons [Soares 2013].

4 APPLYING REQUIREMENTS MANAGEMENT IN AGILE TEAMS USING JIRA

CONFLUENCE

4.1 ABOUT THE COMPANY

The company object of study of this article, operates in the field of Information Technology

and is a specialist in Software acting in three business lines: Custom Design, Training and Commercial

Automation. It is an Information Technology (IT) company whose mission is to help customers and

partners to be more agile and competitive in business through the use of technology.

It has been using the Scrum framework in its development process for some time and has been

consolidating itself in the maturation of good practices. The project studied in this article works with

a distributed Scrum team and used the Remote Team Member distribution pattern.

The Remote Team Member distribution pattern consists of work where a single team member

acts in a different location from the rest of the team [STARR, 2012]. Using this distribution line, the

project has a requirements analyst separated geographically from the team, with the function of

monitoring and collecting information about the needs of the Product Owner and is located in São

Luiz do Maranhão – MA, while the development team and other professionals involved are at the

company's headquarters in Cuiabá – MT.

4.2 JIRA TOOL

JIRA software is a project management tool for agile teams, with support for various

methodologies, such as Scrum, Kanban, or similar. It is developed by the Australian company

Atlassian, which specializes in collaboration and development tools. From agile whiteboards and

reports, the tool allows you to plan, control and manage multiple agile software development projects

in one place.

Among the features present in this tool, we can highlight:

• Web and mobile tool: allows access to information regardless of the location of the

participants;

• Easy preparation of the Backlog: Allows the creation of tasks, categorizing for example,

by user stories and bugs, allowing the prioritization of these tasks easily through the drag

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

and drop feature. In addition, it allows you to upload and download documents related to

tasks;

• Virtual Kanban : Possibility of creating and customizing Kanban, in order to better adapt

to your workflow of each project.

• Integration with Confluence: Confluence is a commercial tool for information

management and collaboration, known as Wiki, also developed by the company Atlassian.

The data included in this tool serves as project documentation, such as: requirements

management documents, meeting minutes, and other project information.

• Integration with development tools: Possibility to connect with code versioning tools such

as Bitbucket or GitHub, providing teams with traceability on the backlog.

Currently there are tools on the market, similar to Atlassian Confluence such as Trello and

Redmine, but we chose to use Confluence because the Git repository used in the project is Bitbucket.

Confluence has a simple, functional and secure integration with this repository thus ensuring the

purpose of this article, end-to-end traceability, from the requirements collected to the versioning of the

source code. Redmine also has integration with the Bitbucket repository, but Jira, Confluence and

Bitbucket are Atlassian products, so the ease of integration between these services is absurd.

4.3 CONFLUENCE TOOL

 Confluence is a software where there is content collaboration, basically it is a repository of

information where Wikis can be created formally documenting the requirements collected with the

PO (Client or Project Owner) informally, thus avoiding wear and tear and inconsistency with the survey

made by the requirements analyst. This is a space where the client can access and validate the

information contained therein, thus following one of the principles of Scrum, the active participation

of the Client.

The Wiki could store texts, files and images on its document pages, through this feature it is

possible to link prototypes that complement the documentation. In some cases, for features that have

complex behaviors, written requirements alone are not sufficient for the team to build the functionality

within the limits of acceptable changes, and this is where the Software Interaction overview diagram

comes in.

4.4 ISSUES ANALYZED IN PREVIOUS PROJECTS

In Jira, the project management tool used by the company, each task, or ticket, as it is called,

receives a unique code that makes it possible to identify it. In the projects previously carried out by the

company, the documentation of the tasks was carried out in the ticket itself.

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

Suppose that in a given project, a Customer Registration functionality was developed in Sprint

1, in this way, all the documentation and requirements for performing this task, were described in the

Ticket itself, as shown in Figure 1, the Ticket MP-010. As the project progressed, improvements and

bugs needed to be made in this functionality. As we can see in Figure 1, the functionality underwent a

bug fix in Sprint 3 (Ticket MP-035) and an improved business rules change in Sprint 4 (Ticket MP-

061).

Figure 2: Example of the evolution of customer registration functionality

All these documents were recorded in the system, and could be consulted by performing a

Sprint filter. But a frequent problem that was noticed in the course of the projects, is that often after

the tasks developed, the Product Owner or others involved, did not remember some business rules and

improvements requested in previous Sprints.

For example, in Sprint 10, the Product Owner questioned the Scrum Master regarding the

business rule of not allowing customer registration under the age of 18. As many Sprints of the

accomplishment of this activity passed, the Scrum Master sometimes did not remember or even was

in doubt regarding the questioned doubt. To confirm these doubts the same should look for all the

tickets that changed this functionality already developed, going through all the previous Sprints or

using search engines of the tool, but this process was not very agile.

Another difficulty that could also happen was in situations when a new professional entered

the project and needed to make a complex improvement in a certain functionality. As the

documentation regarding the functionalities were scattered among the Sprints, it hindered the process

of full understanding of the business rules and changes already implemented, requiring the explanation

of a professional who participated in this construction process.

Based on the experience of previous projects, it is perceived that this process of search and

confirmation of information was often time-consuming and exhausting, requiring a mechanism that

facilitated the traceability of changes that could happen in the functionalities of the software during

development.

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

5 CONFIGURATION AND REQUIREMENTS MANAGEMENT IN JIRA CONFLUENCE

In view of the problems faced in the management of the requirements, we sought the definition

of a solution that would meet this reality and that can be summarized in Figure 2 below.

Figure 3. Cycle of steps representing the solution found

5.1 DOCUMENTATION OF REQUIREMENTS IN CONFLUENCE

To centralize and formalize the requirements collected, we created a specific space for the

documentation of the project in Confluence, documenting the functionalities of the hierarchical form

present in the menu of the developed system. Suppose the flow of functionality in the system is:

Payroll>Open New Sheet. When a new member joins the project and they need to read the

documentation of the functionality, in Clonfluence will be available a documentation page of the same

with the versions of the functionality, as we can see in Figure 3.

Each feature receives one page per change version of the feature, to manage the changes made.

The first implementation of this feature receives a page with version number, as we can see in Figure

3: Open New Sheet 1.0 and Open Sheet 1.1, where version 1.1 is the page responsible for maintaining

the latest changes to this functionality.

Another advantage that we can observe is the linking of the Ticket responsible for the existing

improvements in version 1.1, in this case the Ticket is the MPMA-70 and in which Sprint this Ticket

was contemplated, thus facilitating the integration of new members and fast traceability of

Documentation by Activity.

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

Figure 4. Wiki page with functionality requirements

5.2 TASK TICKET BY SPRINT

The tickets of each task have the same link of the requirements, where the scenarios, functional

prototypes, data diagrams, business rules and other information necessary for the development of the

task are described. As we can analyze in Figure 4.

Figure 5. Integration of requirements between the Jira tool and the Wiki

Note that in the "Description" field is the link to the page of the requirements needed to develop

the functionality, in addition we can observe that the versioning of Wiki requirements, by default have

the same "Fix Versions" (Version). We can verify through Figure 4, useful information about the

activity: the member of the Scrum team that was responsible for the activity, how long this member

took to complete the task, how many commits he uploaded to the repository and in which Sprint this

functionality was contemplated.

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

5.3 TICKET INTEGRATION WITH COMMITS IN BITBUCKET

 Bitbucket is a project hosting service, where through a G-it repository, the source codes are

archived and versioned in an organized way and through Jira it is possible to track the commits related

to the Tickets of the tasks developed.

For this to happen, the team member simply uploads their commit to the repository with the

default name of the project, accompanied by the corresponding Ticket number . In the example used,

this nomenclature would be MPMA-70, as shown in Figure 5.

Figure 6. Traceability of commits through Jira

5.4 RESULTS ACHIEVED

After identifying a deficiency in the tracking of requirements and in the form of versionaries,

we implemented a standard using the tools mentioned during the article, gaining agility in the tracking

of requirements.

Previously, the requirements were fixed in the activities themselves, thus generating a

decentralization of information. In this way, if a new team member or the Product Owner himself

needed to visualize a business rule, a search would have to be made for the description of each Ticket

until he found the necessary information. With the centralization and organization of the requirements

in pages structured in a hierarchical way, agility was gained in the process of searching for information

because, once the page containing the requirements is available, all those involved (including the

Product Owner) will be able to view it centrally and solve the business doubts about the functionality.

In addition to being able to check more information, such as the Tickets that are linked to the task,

which Sprint was performed this Ticket and the member responsible for developing the functionality.

Through the formalization of requirements, a transparent and agile understanding of the

requirements and processes was obtained, adding value to the business and the development

environment, increasing the productivity and quality of the product delivered to the customer, as well

as avoiding inconsistency between the parties. These benefits were maximized by the fact that the

project analyzed in the study was characterized as a distributed team and enabled the broad traceability

of requirements for it.

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

6 CONCLUSION

This proposal aimed to enhance the integration and traceability between Scrum processes, from

requirements gathering to source code.

With the growth of the use of the Scrum methodology, we can see that support tools have

emerged that have a fundamental role in the distributed teams, because through them, it was possible

to versioning and maintain a traceability of the documents as is done with the source code in a git

repository.

 One of the great challenges encountered was to keep the pillars of Scrum intact even with the

geographical distribution of the parties involved, in addition to ensuring the interaction of those

involved in the project through the tools. With the versioning and standardization of the requirements,

we were able to maintain the consistency of the information, the rapid tracking of information about

certain functionality and with this we achieved the objective of reducing costs and amplifying

efficiency and quality from the beginning until the completion of the project.

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

REFERENCES

Bissi, Wilson. SCRUM - METODOLOGIA DE DESENVOLVIMENTO ÁGIL 2007. Disponivel em

< http://revistas.bvs-vet.org.br/campodigital/article/view/30944/33947>. Acessado 06/09/2017.

Collins, Eliane F. et al. Experiência em Automação do Processo de Testes em Ambiente Ágil com

SCRUM e ferramentas OpenSource. Disponível em <

http://www.lbd.dcc.ufmg.br/colecoes/sbqs/2010/RL4_eliane_collins.pdf> Acessado 03/09/2017.

Cruz, Fábio. Scrum e PMBOK unidos no Gerenciamento de Projetos, 1 ed. Rio de Janeiro, Brasport

Livros e Multimídia Ltda 2013.

Dimes, Troy. Scrum Essencial, Babelcube inc 2014.

Lima, Eleandro Lopes de, et al. SCRUM: UMA DAS METODOLOGIAS ÁGEIS MAIS USADAS

DO MUNDO. Disponível em <http://revistapensar.com.br/tecnologia/pasta_upload/artigos/a64.pdf>.

Acessado 15/10/2017.

Machado, Marcos, et al. SCRUM – Método Ágil: uma mudança cultural na Gestão de Projetos de

Desenvolvimento de Software 2009. Disponível em

<http://uniesp.provisorio.ws/fagu/revista/downloads/edicao12009/Artigo_5_Prof_Marcos.pdf>.

Acessado 05/10/2017.

MARÇAL, Ana Sofia Cysneiros, et al. Estendendo o SCRUM segundo as Áreas de Processos de

Gerenciamento de Projetos do CMMI 2007. Disponível em

<https://inf.ufes.br/~monalessa/PaginaMonalessa-

NEMO/ES_Mestrado/Artigos/EstendendoScrumSegundoAreasDeGerenciaNoCMMI.pdf>. Acessado

05/10/2017.

Mendonça, (2012) Ricardo Augusto Ribeiro de. Levantamento de requisitos no desenvolvimento ágil

de software. Disponivel em <

http://www.cpgls.pucgoias.edu.br/7mostra/Artigos/AGRARIAS%20EXATAS%20E%20DA%20TE

RRA/Levantamento%20de%20requisitos%20no%20desenvolvimento%20%C3%A1gil%20de%20so

ftware.pdf >. Acessado 20/10/2017.

Molinari, Leonardo. Testes funcionais de software. Visual Books 2008.

Pedro, Denis et al. O guia Passo-a-Passo para implantar o Scrum em seu próprio projeto. Disponivel

em < http://www.mindmaster.com.br/e-book-como-implantar-scrum/>. Acessado 13/10/2017.

Sabbagh, Rafael. Scrum Gestão Ágil para Projetos de Sucesso, Casa do código 2013.

Santos, Alinne C Corrêa et al. Experiência Acadêmica de uma Fábrica de Software.

Star, David. Scrum distribuído. Disponivel em < https://msdn.microsoft.com/pt-

br/library/jj620910(v=vs.120).aspx#bkmk_degrees>. Acessado 20/10/2017.

Silva, Daisy Eliana dos Santos, et al. METODOLOGIAS ÁGEIS PARA O DESENVOLVIMENTO

DE SOFTWARE: APLICAÇÃO E O USO DA METODOLOGIA SCRUM EM CONTRASTE AO

MODELO TRADICIONAL DE GERENCIAMENTO DE PROJETOS 2013. Disponivel em <

http://revistas.ung.br/index.php/computacaoaplicada/article/view/1408/1194>. Acessado 04/09/2017.

http://revistas.bvs-vet.org.br/campodigital/article/view/30944/33947
http://www.lbd.dcc.ufmg.br/colecoes/sbqs/2010/RL4_eliane_collins.pdf
http://www.mindmaster.com.br/e-book-como-implantar-scrum/
https://msdn.microsoft.com/pt-br/library/jj620910(v=vs.120).aspx#bkmk_degrees
https://msdn.microsoft.com/pt-br/library/jj620910(v=vs.120).aspx#bkmk_degrees
http://revistas.ung.br/index.php/computacaoaplicada/article/view/1408/1194

Uniting knowledge integrated scientific research for global development

Proposal for requirements traceability in distributed agile teams

Silva, Edson. Scrum e TFS: uma abordagem prática, 1 ed. Rio de Janeiro, Brasport Livros e Multimídia

Ltda 2017.

Silva, F. G. et al. Uma análise das Metodologias Ágeis FDD e Scrum sob a Perspectiva do Modelo de

Qualidade MPS.BR 2009. Disponível em < https://www.scientiaplena.org.br/sp/article/view/678>.

Acessado 04/09/2017.

Soares, Michel dos Santos. Metodologias Ágeis Extreme Programming e Scrum para o

Desenvolvimento de Software. Disponível em <

http://www.periodicosibepes.org.br/index.php/reinfo/article/view/146> Acessado 03/09/2017.

Silva, Ricardo Pereira e. Como Modelar com UML 2. Editora Visual Books 2009.

Silva, Vinicius Bernardo, et al. Experiências de ensino a distância do gerenciamento ágil de projetos

com Scrum e apoio de uma ferramenta para gerência de histórias de usuário. Disponível em <

http://seer.upf.br/index.php/rbca/article/view/5614>. Acessado 20/10/2017.

Sutherland, Jeff et al. Guia do Scrum 2013. Disponivel em <

https://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf>. Acessado

05/09/2017.

Utilizando Scrum no Desenvolvimento de Software. Disponivel em <

https://s3.amazonaws.com/academia.edu.documents/5851220/wbma2010.pdf?AWSAccessKeyId=A

KIAIWOWYYGZ2Y53UL3A&Expires=1507877080&Signature=mmq2%2B42KAFfVT7VDtL99x

qYSFYE%3D&response-content-

disposition=inline%3B%20filename%3DConducting_an_Architecture_Group_in_a_Mu.pdf#page=9

3>. Acessado 13/10/2017.

Versionone (2008) “The State of Agile Development Survey Results”. Disponível em

<http://www.versionone.com/pdf/3rdAnnualStateOfAgile_FullDataReport.pdf>. Acessado:

04/09/2017.

Vieira, Wagner Leite. PROPOSTA DE UMA ARQUITETURA PARA APLICAÇÕES DE APOIO ÀS

ATIVIDADES DO SCRUM BASEADA EM SERVIÇOS 2016.

https://www.scientiaplena.org.br/sp/article/view/678
http://www.periodicosibepes.org.br/index.php/reinfo/article/view/146
http://seer.upf.br/index.php/rbca/article/view/5614
https://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf
https://s3.amazonaws.com/academia.edu.documents/5851220/wbma2010.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1507877080&Signature=mmq2%2B42KAFfVT7VDtL99xqYSFYE%3D&response-content-disposition=inline%3B%20filename%3DConducting_an_Architecture_Group_in_a_Mu.pdf#page=93
https://s3.amazonaws.com/academia.edu.documents/5851220/wbma2010.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1507877080&Signature=mmq2%2B42KAFfVT7VDtL99xqYSFYE%3D&response-content-disposition=inline%3B%20filename%3DConducting_an_Architecture_Group_in_a_Mu.pdf#page=93
https://s3.amazonaws.com/academia.edu.documents/5851220/wbma2010.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1507877080&Signature=mmq2%2B42KAFfVT7VDtL99xqYSFYE%3D&response-content-disposition=inline%3B%20filename%3DConducting_an_Architecture_Group_in_a_Mu.pdf#page=93
https://s3.amazonaws.com/academia.edu.documents/5851220/wbma2010.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1507877080&Signature=mmq2%2B42KAFfVT7VDtL99xqYSFYE%3D&response-content-disposition=inline%3B%20filename%3DConducting_an_Architecture_Group_in_a_Mu.pdf#page=93
https://s3.amazonaws.com/academia.edu.documents/5851220/wbma2010.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1507877080&Signature=mmq2%2B42KAFfVT7VDtL99xqYSFYE%3D&response-content-disposition=inline%3B%20filename%3DConducting_an_Architecture_Group_in_a_Mu.pdf#page=93

