
 

 
Connecting Expertise Multidisciplinary Development for the Future 

The problem of the 1-center in graphs: Variations and applications in the resizing of electric energy 

CHAPTER 159 

The problem of the 1-center in graphs: Variations and applications in the resizing of 

electric energy 

 

 
https://doi.org/10.56238/Connexpemultidisdevolpfut-159 

 

Isis Paulo do Nascimento 

Graduate Program in Mathematical and 

Computational Modeling/UFRRJ 

Master's student – PPGMMC - UFRRJ 

E-mail: owse.isis@gmail.com 

 

Aquiles Braga de Queiroz 

Graduate Program in Mathematical and 

Computational Modeling/UFRRJ 

Post-Doctorate. , Laboratory of Computer Science, 

Robotics and Microelectronics of Montpellier, 

LIRMM, França. 

E-mail: abq.ufrrj@gmail.com 

 

Carlos Andrés Reyna Vera-Tudela 

Graduate Program in Mathematical and 

Computational Modeling/UFRRJ 

PhD - Institution: COPPE/UFRJ 

E-mail: candres@ufrrj.br 

 

ABSTRACT 

Localization problems have applications in several 

areas, including the study of the planning of power 

distribution networks. In the present work, we 

present the problem of the modified 1-center in trees 

with applications to the study of the resizing of 

energy networks, as well as an algorithm for the 

resolution of the problem in time O(  n log n), where 

we consider positive weights and distances. 

The work also includes the presentation of 

computational results for some of the methods 

presented, as well as new strategies for the 

application of localization problems to the design of 

power distribution networks. 

 

Keywords: Localization problems, 1-center, 

Centroid.

 

 

1 INTRODUCTION 

The distribution of electricity in Brazil has regulations and technical standards that must be followed, 

aiming at excellence in the provision of the service [ANEEL, 2015]. According to [Garcia, 2003], the electric 

power distribution system is the part of the power system that covers from the lowering substations to the 

transformers (primary distribution system) and from these to the electrical input of consumers (secondary 

distribution system). 

Considering factors that impede the control of the State in planning or relocating new 

distribution networks in less favored regions, in many cases, a percentage of the population takes the 

initiative in the acquisition of public services, even if provisionally. In the case of electricity, sometimes 

its supply occurs through non-regular connections, with the redirection of energy from the main 

electrical system to homes and/or businesses initially not registered. 

In order to serve the population in such regions in a standard way and, on the other hand, 

representing a benefit to electric power concessionaires, the study and elaboration of a new energy network 

became imperative, as well as the study of the problem of resizing electricity. Certain applications of graph 
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partitioning and localization algorithms to the planning and resizing of power grids are presented in [Assis 

et al., 2014], [Garcia, 2003] and [Silva et al., 1996]. 

In this work, we present the modified 1-center problem, applied to the re-dimensioning of a tree 

power grid, as well as an O(n log n)  time algorithm  for its solution where we consider positive weights 

and distances. The work includes a first study of the problem for the general class of graphs and 

computational results obtained in the implementation of the method. 

 

1.1 LOCALIZATION PROBLEMS IN GRAPHS 

The 1-median problem in a weighted graph looks for a vertex that minimizes the sum of the 

weighted distances from the vertex itself to all other vertices, each associated with a given positive 

weight. [Hakimi, 1964] presented a study on the 1-median problem, and presented the concepts of 

absolute center and absolute median as generalizations of the center and median concepts of a weighted 

graph as well as procedures for obtaining such locations. As a well-solved special case, the problem of 

the 1-median in a tree was first considered by [Hua, 1961] (Hua et al. Applications of mathematical 

models to wheat harvesting. Chin. Math. 2, 77-91 (1962)). An efficient algorithm for this problem is 

also presented by [Goldman, 1971]. [Burkard and Krarup, 1998] presented a method for solving the 1-

median problem in cacti (i.e., graphs in which every block is a simple cycle or a single edge) when 

negative weights are allowed. 

The  p-median  problem in a graph is the problem of identifying a subjoint  P of p vertices that 

minimize the sum of the weighted distances from each other vertex in the graph to the nearest vertex in 

P   . By [Kariv and Hakimi, 1979b], the p- median problem in a graph is NP-Hard. The problem remains 

NP-difficult even when restricted to planar graphs with the maximum degree equal to 3. However, in 

[Kariv and Hakimi, 1979b] results are presented that led to efficient algorithms when the graph is an a 

tree, including an algorithm that finds the p-median of an a'tree (for p > 1) in time O(n2p2). [Tamir, 

1996] presented an algorithm in time  O(pn2) for the problem, and [Das- kin and Maass, 2015] 

presented some existing results in the literature for the classical problem. 

The 1-center problem can be defined as follows: given a set  of n  demand points, a space of 

viable locations for a service, and a function to calculate the cost of transportation between a service 

and any point of demand, find a position of the service that minimizes the maximum cost of 

transportation from the service to the point of demand. The problem of the weighted absolute 1-center 

was defined and solved by [Ha- kimi, 1964]. For the absolute 1-center problem, it is possible that its 

solution lies at a vertex of the graph or at a point inside an edge (other than the end of such an edge). 

[Hakimi et al., 1978] showed that the method of [Hakimi, 1964] can be implemented so as to require 

O(|E|n2 log n). Later refinements of the procedure were obtained by [Kariv and Hakimi, 1979b], 

resulting in an O(|E|n log n) for the weighted case and O(|E|n) for the unweighted case. An algorithm 
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for obtaining the absolute 1-center of a tree is also presented by [Dearing and Francis, 1974], by [Kariv 

and Hakimi, 1979a] and by [Megiddo, 1983]. 

Given a set  X = {x1, ..., x p} of  p points in a graph, the distance  d(X, vj) between X and a 

node vj is computed as mini=1,...  ,p d(xi, vj). In  the p-center problem, we must find a set  X of p points 

in the graph such that maxj=1,...,n   wj.d(X, vj)  is minimi- zed, where wj is the weight of vj  in the 

graph. The p-center problem was formulated by [Hakimi, 1965]. [Kariv and Hakimi, 1979a] showed 

that the problem in a general graph is NP-Hard. Additionally, they described an O(n2 log n)  time 

algorithm to obtain the absolute p-center of a vertex-weighted tree. [Tansel et al., 1983] presented a survey 

on the problems of the p-median and the p-center. [Wang and Zhang, 2021] present a time-rhythm 

algorithm O(  n log n) for the p-center problem in a tree. 

Some variations of localization problems are addressed by [Gørtz and Wirth, 2006] and [Nguyen 

et al., 2019] and [Calik et al., 2015]. [Gørtz and Wirth, 2006] address variations of  the p-center problem, 

and present an approximation algorithm for the asymmetric version of the problem. In  the inverse 1-center 

problem  in a graph, we must modify the compressions of the edges or the weights of the vertices within 

certain limits, so that the pre-specified vertex becomes a 1-center 1 (absolute) of the perturbed graph and 

the cost of modification is  minimized. [Nguyen et al., 2019] present a study on the inverse 1-center 

problem in a cost-weighted tree of edge length modification. 

 

2 THE MODIFIED 1-CENTER PROBLEM 

In the study of the resizing of energy networks, we aimed to define an optimal point in the 

network that meets all the constraints presented in loss forms, involving intrinsic constants of materials 

and equipment employed. Taking into account the relationship between the resistance of an electrical 

conductor and its length, aiming at minimizing maximum losses, algorithms for minmax localization 

problems can be applied to the problem of resizing power grids. We will present below the problem of 

the modified 1-center, as well as the concept of accumulated demands, applied to a previously partitioned 

network in a tree, according to an upper limit for the sets of demands in a region. 

Let T = (V, E) be a weighted tree, with a weight function k(vi) associating with each vertex vi ∈ 

V  a positive real, and a f distance d(em)  associating with each edge in ∈ And  a positive real. Being 

in  = (vi, vj), we will denote by  d(em) = d(vi, vj) the distance between vi and vj. 

Let V ′ ⊆ V. The weight function k can be extended to the vertex set  V ′ as the sum of the weights 

of the vertices in V . That is, we have 
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Let  T ′ = (V ′, E′) be a subtree of T  = (V, E). We denote by  k(T ′) = k(V ′) the weight of the 

suba ́rvore T ′. For an edge  (vi, vj) of T = (V, E), let T (vi) be the tree  T rooted  in vi and let T   (vi, vj)   

be the subtree  of  T (vi)  rooted in  vj. 

In the problem of network resizing, we consider a secondary energy network, given by a 

weighted tree T = (V, E). We consider a fixed source of energy t to be implanted in a vertex of the 

tree, called transformer. In the problem, we must define the location of a transformer, which 

minimizes the voltage drop by the most in the network. We observed that the length of an energy 

conductor has a strong influence on the voltage drop resulting from the increase in electrical 

resistance. 

For the tree  T = (V, E), if the transformer is installed at a vertex  vi ∈ V (T), we must calculate 

the total voltage drop for each vertex  vj ∈ T , with   vj ≠ vi. The total voltage drop from vi to a vertex 

vj is defined as the sum of the voltage drops occurred at each of the edges of the one path from vi 

to vj in T . 

For the definition of  the voltage drop  at an edge  (vj, vk) ∈ E(T), we will consider the weight 

k(vi) as the energy demand at vertex vi  ∈  T  . Thus, we define the stress drop on an edge  (vj, vk) ∈ E(T), 

denoted  by q(vj, vk), by 

 

where 

d(vj, vk) is the distance from vj to vk, 

k(T (vj, vk)) is the weight of the subtree  T (vj, v k), or cumulative demand of   T  (vj, vk),  

μ(vj, vk) = is the constant of the conductive material used in the stretch between vj and vk. 

As illustrated in Figure 1 below: 

 

Figure 1: Definition of a voltage drop calculation. (a) Distance between vertices, (b) Cumulative demand, (c) Material 

constant 

 

 

We observe that for an edge  (vj, vk) ∈ E(T), we have  d(vj, vk) = d(vk, vj) and  μ(vj, vk) = 

μ(vk, vj  ). However, we do not necessarily have the symmetry  k(T (vj, vk)) = k(T  (vk, vj))). 

Let P  (vi, vj) = (vi, u1, u2, . . . , up, vj) be the path in  T of the vertex vi in which the transformer 

is located to a vertex vj any of T  . We define the total voltage drop between vi and vj by 
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v,i 

 

That  is, Q(vi, vj) is the sum of the voltage drops occurring along the path P (vi, vj).  

For vi ∈  V(T), let 

 

The  maximum total voltage drop from vi, that is, the maximum total voltage drop considering a 

transformer in vi. 

Let v∗ ∈ V (G)  be a vertex that minimizes this maximum voltage drop, i.e., a vertex such that 

 

Analogous to the terminology presented by [Kariv and Hakimi, 1979a], we define v∗  as the 

modified 1-center of T and F (v∗) as the modified 1-radius of  T, denoted by r1. We observe that in the 

example in Figure 2, the tree T has the vertex v1 as 1-center and the vertex v2 as its modified 1-center, 

evidencing the distinction between the two problems. 

 

Figure 2: Example of the modified 1-center problem. 

 

 

 

As an immediate first approach, a first method for obtaining the modified 1-center could consist 

of applying n depth searches to the T-tree  , each having a vertex vi ∈ V(T) as the root. For each vertex  

vi ∈ V (T), the depth search rooted in vi  calculates the stress drops occurring at the edges of each root-

leaf path of the depth tree. Then, it calculates the total voltage drop in each leaf of the depth tree rooted   

in vi and defines the total voltage drop that has occurred, considering the transformer in vi. Since the 

ca'lculo of the accumulated demands of each suba ́rvore may require O(n) time, the method uses a pre-

processing in O(n) time  for the cálculo of all the accumulated demands of the climb the tree of T . The 

preprocessing algorithm proceeds similarly to the algorithm of [Hua, 1961] for the 1-median in a 'tree, 

initiating  the definition  of the weights of the subtrees from the leaves of T. At the end, the modified 

1-center of T will be the vertex vi with the lowest total tense drop at most. In view of the application 

of n in-depth searches on T, this first approach could require O(n2) time. 

Let T be the input tree for the problem of network resizing, with weights at vertices and 

distances at strictly positive edges. Let v  be a vertex of T with degree dv. Let  T −  v be the graph 

obtained from T by removing the vertex v. Aiming at an adequacy to the results presented by [Kariv 

and Hakimi, 1979a],  T −  v consists of  dv subtrees Tv,1, Tv,2, . .  . , T v,dv  . We denote by T +  the subtree 
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consisting of  Tv,i, the vertex v, and the edge that connects v to  Tv,i. Based on the results presented by 

[Kariv and Hakimi, 1979a], we have the following extension. 

Motto 1. Let  v ∈ V (G) be a fixed vertex and let v be a  vertex such that the total voltage drop 

is greater than v, i.e.  Q(v, v) = maxv′∈V Q(v, v'). Let Tv,l be the subtree of T −   v to which v belongs. 

Then, the modified 1-center of T is in T+. 

Demonstration. Assume that the modified 1-center v∗ of T is not in T+. Then  Q(v∗, v) > Q(v, v), 

assuming that the demands and distances are all positive in T . Therefore, if  r1 is the modified 1-radius 

of  T, then r1 ≥  Q(v∗, v) > Q(v, v)  = maxv′∈V Q(v, v'). Thus, by an argument analogous to that presented 

in [Kariv and Hakimi, 1979a],  the choice of v as the modified 1-center  of T is better than the choice of 

v∗, which is a contradiction. 

 

2.1 THE MOTTO LEADS TO THE FOLLOWING RESULT. 

Corolla 1. Let  v and v be two vertices such that  v ∈ Tv,l, v ∈ Tv,k, k≠ l, and  Q(v, v) = Q(v, v) = 

maxv′∈V Q(v, v'). Then v is the modified 1-center of T . 

Analogous to an observation in [Kariv and Hakimi, 1979a], if the vertex v in lemma 1 is not a 

leaf  of T, then T+ is a proper subtree of T . 

 

3 METHODS 

Analogous to that presented by [Kariv and Hakimi, 1979a] for the 1-center problem, we can 

obtain the modified 1-center of a T-weighted tree  , succinctly applying Lemma 1, limiting each time the 

search space for the vertex with the optimal location. That is, for a given vertex vi, we calculate all 

possible paths from it, keeping the value that represents the drop of tension that most often occurred. 

By the above lemma, the climb  of T (vi) in which the voltage drop occurs from vi will contain the modified 

1-center of T .  

For a choice of the initial vertex vi, we will present the strategy due to [Kariv and Hakimi, 1979a] 

that will enable a reduction of the search time. 

 

3.1 THE CENTROID METHOD 

Let  T be a tree, v ∈ V (T), and let Tv,1, Tv,2, . . . , T v,dv be the subtrees of  T −  v. Be |T | the 

number of vertices in T and define N (v) by: 

 

By [Kariv and Hakimi, 1979a],  a center of the tree is a vertex vc for which N (v) is minimal. 

That is 

 



 

   
Connecting Expertise Multidisciplinary Development for the Future 

The problem of the 1-center in graphs: Variations and applications in the resizing of electric energy 

We observe that a tree can have either a centroid or two. In the latter case, the two centroids are 

connected by an edge (see [Harary, 1969]). Additionally, we observed that N (vc) ≤ ⌊n/2⌋. More exactly, 

the number of vertices in each of the subtrees Tvc,1, Tvc,2, . . . , Tvc,dvc 
 is no greater than ⌊n/2⌋  + 1. 

Thus, if in the method for obtaining the modified 1-center, at each step we choose a centroid of 

Ti to be the vertex vi, then |Ti+1| ≤ ⌊|Ti|/2⌋ + 1, halving the number of vertices of the current tree at 

each step. Let be the number of vertices of the trees at each step given by  O(n), O( 
𝑛

2
 ), O(  

𝑛

4
),…, O(1), 

the number of steps will be in the  ma ́ximo O(log n). Therefore, analogous to the strategy presented by 

[Kariv and Hakimi, 1979a], for obtaining the modified 1-center  of T in  time O(n log  n), we must provide  

an O(n) time   algorithm for the definition of the centroid of an a'tree. 

By [Kariv and Hakimi, 1979a], the inequality N (vc) ≤ ⌊n/2⌋ is a necessary and sufficient 

condition for a vertex to be a centroid of the tree. Thus, based on this property, a version of the algorithm 

of [Goldman, 1971] can be used to define the centroid of a tree in O(n) steps. By [Kariv and Hakimi, 

1979a], in the execution the algorithm we use a copy of the original T ′ tree as an auxiliary tree on 

which the algorithm will run. A variable n(v)  is also used for each vertex v of the tree. By treating  T ′ 

during the algorithm, we can verify that if  v is a sheet  of T ′,  then T ′  − v is contained in one of the 

subtrees  of   T −  v and n(v) then provides the number of vertices of this subtree 

CENTROID(T ) 

T ′ = T       // Initialization 

for each vertex in ∈ T ′ do    // Initialization 

n(v) = n − 1 ; 

while the  auxiliary tree T′ does not consist of a single vertex v0 let v be  a leaf of the auxiliary 

tree T′ ;   

if n(v) ≤ ⌊n/2⌋ then 

STOP   // v It is a centroid of the original tree T ; 

otherwise 

let u be the vertex adjacent to v in T ′; 

n(u) =  n(u)  − (n − n(v)) ; 

Remove the vertex  v (and the edge (u, v)) of T ′ ;  

Return the vertex v0 as a centroid of T ; 

By [Kariv and Hakimi, 1979a], a detailed demonstration of the validity of the centroid algorithm 

is not presented, or a formal demonstration of its O(n) time complexity. (By an observation in [Kariv 

and Hakimi, 1979a], on the conditional of the algorithm, if n(v) is the number of vertices of the subtree 

of T –  v to which you belong, so  n − n(  v  ) is the number of vertices of the subtree of  T − u containing   

v. Therefore, n(u) is correctly updated, i.e. When you becomes a leaf, n(u) gives the number of vertices 
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vi,li 

˜

^ 
˜

^ 
˜

^ 

˜

^ 

̅ ̅ 

of the subtree of   T − u containing T ′ − u. Additionally, if the relation   n(v) ≤ ⌊n/2⌋ is not valid, then v 

cannot be a  centroid and its removal of T ′  still preserves the centroid(s) of  T in   T′   (see [Kariv 

and Hakimi, 1979a].) 

 

4 ALGORITHM FOR THE MODIFIED 1-CENTER PROBLEM 

Analogous to the approach by [Kariv and Hakimi, 1979a], with the use of the C ENTROID method, 

we can obtain the modified 1-center of a tree in time O(n log n). In 

The following algorithm, the variables  T ′, T ′′, and  T ′′′represent at each step the subtrees Ti, T
+ 

, and Tvi,li, respectively. 

1-MODIFIED CENTER(T ) 

  T ′= T 

while T ′ has more than one edge do 

vc = CENTROIDE(T ′) ; 

let v∈ T such that  Q(vc, v) = maxv′∈V(T)  Q(vc, v' )  ;  

let T ′′′ be the component of   T − vc containing  v ;  

let T ′′ be the subtree consisting of T ′′′ ,the vertex vc, 

and the edge that connects vc to T ′′′; 

if there exists a vertex  v such that  v ∉ T  ′′ and  Q(vc, v ) = Q(vc, v) then  

Return the vertex vc; 

 By the Corolla 1, the vertex vc is the modified 1-center of T ; 

T ′ = T ′ ∩ T ′′ ; 

if T ′ has a single edge and = (vr, vs) then  

let dr = max v′∈V Q(vr, v
′) ; 

let ds = maxv′∈V Q(vs, v
′) ; 

if dr < ds then Rreturn the vertex vr ; 

or else return the vertex vs ; 

By Lemma 1, at each iteration given you ∈  T ′, the modified 1-center of  T is located in  T ′′. As 

a halting condition of the algorithm, we have either obtaining the modified 1-center vc, or the reduction 

of T ′ to a single edge containing the vertex to be returned. 

Since the number of iterations is limited by  O(log n), and considering  the time O(n) required 

Centroid, the 1-Center Modified  method requires O(n log n) time. 

 

5 FINDINGS 

Localization problems have applications that include covering a particular region with the location of 

hospitals, mobile phone towers, installing warning sirens, and the problem of locating battery depots in a drone 
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delivery network (see [Liu, 2019]), among others. In this section, we present a first evaluation of the 

computational performance of the method for the modified 1-center, such performance can be seen in Figure 3. 

The experiments were performed using an Intel(R) Core(TM) i7 - 9750H CPU @ 2.60GHz, 16.0 GB RAM - 

Windows 11. 

 

Figure 3: Execution of the algorithm for the modified 1-center problem in instances (n = 10, . . . , 37). 

 

 

The development in C++ of the software used included the implementation of classes for the storage 

of instances of the problem in linear space, and for the execution of the CENTROID methods in  O(n) time 

and 1-CENTER MODIFIED in O(n log n) time. The approach included the creation of instâˆncias of 

sizes of 10, 13, 16, ..., and 37 vertices, as well as a performance comparison with the first method of 

measuring the 1-center modified in quadratic time. For the set of generated instâˆncias, with the 

representation of weights of vertices and edges, accumulated demands, voltage drops and electrical 

conductivity constants in simple precision, the modified 1-CENTRO  METHOD represented an 

improvement of 18.92% on average, in the execution time in elementary operations). 

As new strategies for solving the problem of resizing energy networks, we can mention the 

application of a variation of the problem of the inverse 1-center, aiming at an adaptation of sectors of 

a network in project to the capacity of equipment used in the distribution of energy. 

 

6 CONCLUSION 

We present a method for solving the modified 1-center problem in trees in O(n log n) time  . The 

method used the centroid approach presented by [Kariv and Hakimi, 1979a] for the problem of the 1-

cla ́ssic center in the 'trees. For graphs without isthmus, the concept of accumulated demands may 

represent an equivalence of the problem presented to the classical problem, requiring an in-depth study 

of the problem when restricted to other classes of graphs. The computational results presented show 

that  the O(n log n)  method represents a significant improvement in execution time when compared to 

initial quadratic approaches to the problem.  

 

 



 

   
Connecting Expertise Multidisciplinary Development for the Future 

The problem of the 1-center in graphs: Variations and applications in the resizing of electric energy 

REFERENCES 

 

ANEEL, A. N. d. E. E. (2015). Web page. https://antigo.aneel.gov.br/web/ guest/regulacao-dos-

servicos-de-distribuicao. Acessado: 2022-06-06. 

 

Assis, L., Franca, P., e Usberti, F. (2014). A redistricting problem applied to meter readingin power 

distribution networks. Computers & Operations Research, 41:65–75. 

 

Burkard, R. e Krarup, J. (1998). A linear algorithm for the pos/neg-weighted 1-median pro- blem on a 

cactus. Computing, 60:193–215. 

 

Calik, H., Labbé, M., e Yaman, H. (2015). p-center problems, g. laporte, s. nickel, f. saldanha da gama 

(eds.). In Springer, editor, Location Science. Springer International Publishing Switzerland. 

 

Daskin, M. S. e Maass, K. L. (2015). The p-median problem, g. laporte, s. nickel, f. saldanha da gama 

(eds.). In Springer, editor, Location Science. Springer International Publishing Switzerland. 

 

Dearing, P. M. e Francis, R. L. (1974). A minimax location problem on a network. Transpor- tation 

Sci., 8:333–343. 

 

Garcia, V. (2003). Grasp para o problema de planejamento de redes secundárias de  distribuição de 

energia elétrica. In Anais do XXXV SBPO, p. 1427–1437, Rio de Janeiro. SOBRAPO. 

 

Goldman, A. J. (1971). Optimal center location in simple networks. Transportation Sci., 5: 212–221. 

 

Gørtz, I. L. e Wirth, A. (2006). Asymmetry in k-center variants. Theoret. Comput. Sci, 361: 188–199. 

 

Hakimi, S. L. (1965). Optimum distribution of switching centers in a communication network and some 

related graph theoretic problems. Operations Research, 13:462–475. 

 

Hakimi, S. L., Schmeichel, E. F., e Pierce, J. G. (1978). On p-centers in networks. Transporta- tion Sci., 

12:1–15. 

 

Hakimi, S. (1964). Optimal locations of switching centers and the absolute centers and medi- ans of a 

graph. Operations Research, 12:450–459. 

 

Harary, F. (1969). Graph Theory. Addison-Wesley, Reading, MA. 

 

Hua, L. K. (1961). Applications of mathematical models to wheat harvesting (english transla- tion in 

chin. math. 2 (1962), 77-91). Acta Mathematica Sinica, 11:63–75. 

 

Kariv, O. e Hakimi, S. (1979a). An algorithmic approach to network location problems. part 1: The p-

centers. SIAM J. Appl. Math., 37:513–538. 

 

Kariv, O. e Hakimi, S. (1979b). An algorithmic approach to network location problems. part 2: The p-

medians. SIAM J. Appl. Math., 37:539–560. 

 

Liu, Y. (2019). An optimization-driven dynamic vehicle routing algorithm for on-demand meal 

delivery using drones. Computers & Operations Research, 111:1–20. 

 

Megiddo, N. (1983). Linear-time algorithms for linear programming in r3 and related pro- blems. 

SIAM J. Comput., 12:759–776. 



 

   
Connecting Expertise Multidisciplinary Development for the Future 

The problem of the 1-center in graphs: Variations and applications in the resizing of electric energy 

 

Nguyen, K. T., Nguyen-Thu, H., e Hung, N. T. (2019). Combinatorial algorithms for the uniform-

cost inverse 1-center problem on weighted trees. Acta Math. Vietnam., 44:813–831. 

 

Silva, M., Franc¸a, P., e Silveira, P. (1996). Long-range planning of power distribution systems: 

Secundary networks. Computers Elect. Engng, 22:179–191. 

 

Tamir, A. (1996). An o(pn2) algorithm for the p-median and related problems on tree graphs. 

Oper. Res. Lett., 19:59–64. 

 

Tansel, B., Francis, R., e Lowe, T. (1983). Location on networks: A survey. part i: The p-center and p-

median problems. Management Science, 29:482–497. 

 

Wang, H. e Zhang, J. (2021). An o(nlogn)-time algorithm for the k-center problem in trees. 

SIAM J. Comput., 50:602–635. 


