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ABSTRACT 

This article discusses the efficiency of the Runge-

Kutta classical of fourth-order, Dormand-Prince and 

Bulirsch-Stoer numerical methods in solving initial 

value problems. 

The three methods were compared by solving a 

problem of the suspension dynamics of a vehicle when 

passing over a speed bump in the lane. The problem is 

described by a second order ordinary differential 

equation. Results were obtained by varying the initial 

step size equally for the three methods, and the 

behavior of the vehicle suspension in response to the 

speed bump height was analyzed for each step size. It 

was concluded that it is essential to know the nature of 

the problem to be solved, to properly choose the 

numerical method and the size of the integration step 

to be used. The higher the order of the integration 

method, the greater the possibility of using a larger 

step size with the desired precision. 

Therefore, knowledge of the nature of the problem is 

essential for choosing the solution method and the size 

of the integration step to obtain adequate results. 

 

Keywords: numerical methods, ordinary differential 

equations, runge-kutta, dormand prince, bulirsch-

stoer.

 

1 INTRODUCTION 

Several problems encountered in the sciences, particularly in engineering, can be solved by 

mathematical modeling that results, for the most part, in differential equations. Ordinary differential 

equations (ODEs) are a subset of this universe, which constitute the formulation of initial value problems 

for a variety of processes and systems. The solution of these problems can be obtained by solving the ODEs 

that describe the dynamics of the system (GEAR, 1971, NAGLE; SAFF; SNIDER, 2018, DUTTA et al., 

2020). One of the fundamental tools to obtain these solutions are numerical methods (LAPIDUS; 

SEINFELD, 1971, HULL et al., 2006, BISWAS; CHATTERJEE; MUKHERJEE, 2013, BRONSON; 

COSTA, 2014). 

One of the advantages of modeling processes using ODEs is that they can be solved using numerical 

integration methods, without the need to focus deeply on the theoretical aspects of the mathematical models 

used (STOER; BULIRSCH, 2002, QUARTERONI; SACCO; SALERI, 2007, PRESS et al., 2007). 

Studies of methods of solving ODEs showed over time that most of them could not be solved by 

simple integration or analytical solutions alone (BRONSON; COSTA, 2014, NAGLE; SAFF; SNIDER, 

2018). In many or most cases, it became necessary to use numerical methods to obtain an approximate 
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solution, with desired accuracy, using efficient computational algorithms, enabling the solution of complex 

problems. 

Methods for solving ODEs can be seen as originating from different models, which facilitates the 

understanding of the problem, and computation is closely linked to the origin of the problem and the use 

that will be made of the answers. Therefore, modeling and computational methods are not steps to be taken 

separately from reality and is embedded in a broader context, which involves numerical analysis. In this 

context, a numerical method is a mathematical tool designed to solve numerical problems and its 

implementation, with an appropriate convergence check, consists of the creation of a numerical algorithm 

implemented in a programming language or on a computational platform (QUARTERONI; SACCO; 

SALERI, 2007, ZILL, 2018). 

Among the first numerical methods developed, Euler's methods stand out (BOYER, 1996), which, 

due to their simplicity, are used to facilitate the understanding of the concepts involved in numerical 

integration methods, besides providing satisfactory results for some problems, under certain conditions and 

constraint (CORLESS, 2000, BISWAS et al., 2013, SHAMPINE). 

Several other methods have been developed, which provide more accurate results for more complex 

problems, although they require more sophisticated algorithms and longer computational time. Among the 

most modern classical numerical methods are the Runge-Kutta methods, and its improvements, and the 

Bulirsch-Stoer method (BUTCHER, 2000, PRESS et al., 2007). 

Several works with applications of numerical methods for the solution of various types of problems 

are found in the literature. However, details on the development and theoretical foundation of these methods 

are found in classic textbooks (GEAR, 1971, NAGLE; SAFF; SNIDER, 2012, ZILL, 2018). 

Technical-scientific articles on the subject are generally found and presented in dissertations and 

theses and do not contain theoretical details about the methods used to obtain the results. However, these 

articles serve as a reference for comparison of results and validation of new methodologies or approach 

techniques to solve new problems (VANANI; AMINATAEI, 2011, OBERLEITHNERA; 

PASCHEREITA; SORIAB, 2015, DUTTA et al., 2020; GHANBARI; BALEANU, 2020, HOSSEINI et 

al., 2020, BOSCH NETO et al., 2020). 

In this context, this paper presents a comparison of the efficiency of the classical fourth-order 

Runge-Kutta method, Dormand-Prince method, and Bulirsch-Stoer method in solving the problem of 

suspension dynamics of a vehicle. 

 

2 LITERATURE REVIEW 

A problem involving ordinary differential equations, generically, is reduced to the study of a set of 

N coupled first-order differential equations for a function y_i, i=1,2,⋯,N, expressed by the following 

general form (PRESS et al., 2007): 
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𝑑𝑦𝑖(𝑥)

𝑑𝑥
= 𝑓𝑖

′ (𝑥, 𝑦1, ⋯ , 𝑦𝑁),     𝑖 = 1, ⋯ , 𝑁 

 

The functions f_i^' on the right-hand side in Equation (1) are known. The quotation mark (') here 

does not mean derivative, but just a notation to remember that the functions f_i^' are the derivatives of y_i 

(x). 

A problem involving ordinary differential equations is not completely defined by its equations, 

because it depends on the nature of the initial conditions, which is crucial in determining the best way to 

approach it. Initial conditions are algebraic conditions on the values of the function y_i (x) in Equation (1) 

that can generally be satisfied at specific discrete points, but are not automatically preserved by the 

differential equations (NAGLE; SAFF; SNIDER, 2012, PRESS et al., 2007, ZILL, 2018). 

Instead of being given initial conditions, boundary conditions can be presented along with the 

equation, and they can be as simple as requiring certain variables to have certain numerical values, or as 

complex as a set of nonlinear algebraic equations in their variables. Usually, it is the boundary conditions 

that determine which numerical methods are feasible, and are divided into two broad categories (PRESS et 

al., 2007, NAGLE; SAFF; SNIDER, 2012, ZILL, 2018): 

 Initial value problems-in this case, all y_i (x) are given for some initial value x_0, and one wishes 

to obtain the y_i at some point for some final value of the independent variable, x_f, or at some list of 

discrete points; 

 Two-point boundary value problems - here the boundary conditions are specified at more than one 

value of x. Typically, some of the conditions are specified at x_0 and the rest at x_f. 

 

2.1 FOURTH-ORDER RUNGE-KUTTA METHOD 

The fourth-order Runge-Kutta method is the most popular of the explicit one-step methods, 

described by Equation (2). Without going into details, a schematic illustration of this method is presented 

in Figure 1 (PRESS et al., 2007, NAGLE; SAFF; SNIDER, 2012, ZILL, 2018). 

 

𝑘1 = ℎ ∙ 𝑓(𝑥𝑛,  𝑦𝑛) 

𝑘2 = ℎ ∙ 𝑓(𝑥𝑛 + 0,5 ∙ ℎ,  𝑦𝑛 + 0,5 ∙ 𝑘1) 

𝑘3 = ℎ ∙ 𝑓(𝑥𝑛 + 0,5 ∙ ℎ,  𝑦𝑛 + 0,5 ∙ 𝑘2) 

𝑘4 = ℎ ∙ 𝑓(𝑥𝑛 + ℎ,  𝑦𝑛 + 𝑘3) 

𝑦𝑛+1 = 𝑦𝑛 +
(𝑘1 + 2 ∙ 𝑘2 + 2 ∙ 𝑘3 + 𝑘4)

6
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Figure 1. Schematic illustration of the fourth-order Runge-Kutta method. 

 
Source: PRESS et al., 2007 (adapted). 

 

2.2 DORMAND-PRINCE METHOD 

The seven-stage Dormand-Prince method with local error estimation and interpolator is presented 

in a Butcher framework (Table 1). The solution is advanced with y_(n+1) of order five, a procedure called 

local extrapolation, and the solution y ̂_(n+1) of order four is used to obtain the local error estimate via the 

difference y_(n+1)-y ̂_(n+1). In fact, y ̂_(n+1) is not calculated, instead, the coefficients in the b^T - b ̂^T 

row in Butcher's framework are used to obtain the local error estimate. The sixth constant (C_6) in the 

higher-order error term is minimized, maintaining stability. Six stages are needed for the order 5 method 

and for the seventh stage it is necessary to have an interpolator, which is the last row in Table 1 (ASHINO; 

NAGASE; VAILLANCOURT, 2000). 

This seven-stage method, in practice, reduces to six stages because k_1^[n+1] =k_7^[n] , and the 

row vector b^T is equal to the seventh row corresponding to k_7. The absolute stability range of this method 

is approximately (-3,3,0), as shown in Figure 2. This method is implemented in computational subroutines 

in several platforms, such as MATLAB (ASHINO; NAGASE; VAILLANCOURT, 2000), OCTAVE and 

SCILAB.  

 

Table 1. Butcher's framework for the Seven Stage Dormand-Prince method with Interpellor 

 

 𝐶 𝐴 

𝑘1 0 0      

𝑘2 
1

5
 

1

5
 0     

𝑘3 
3

10
 

3

40
 

9

40
 0    

𝑘4 
4

5
 

44

45
 − 

56

15
 

32

9
 0   

𝑘5 
8

9
 

19372

6561
 − 

25360

2187
 

64448

6561
 − 

212

729
 0  

𝑘6 1 
9017

3168
 − 

355

33
 

46732

5247
 

49

176
 − 

5103

18656
 0 
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𝑘7 1 
35

384
 0 

500

1113
 

125

192
 − 

2187

6784
 

11

84
 

�̂�𝑛+1 �̂�𝑇 
5179

57600
 0 

7571

16695
 

393

640
 −

92097

339200
 

1

40
 

𝑦𝑛+1 𝑏𝑇 
35

384
 0 

500

1113
 

125

192
 −

2187

6784
 0 

    𝑏𝑇 − 𝑏𝑇  
71

57600
 0 − 

71

16695
 

71

1920
 − 

17253

339200
 − 

1

40
 

𝑦𝑛+0,5  
5783653

57600000
 0 

466123

1192500
 −

41347

1920000
 

16122321

339200000
 

183

10000
 

Source: ASHINO; NAGASE; VAILLANCOURT, 2000 (Adapted). 

 

Figure 2. Absolute stability region of the Dormand-Prince method. 

 
Source: ASHINO; NAGASE; VAILLANCOURT, 2000. 

 

 

2.3 BULIRSCH-STOER METHOD 

To understand this method it is necessary to discuss the modified midpoint method, which has its 

most important application in the Bulirsch-Stoer Method. Another technique that can be combined with the 

Bulirsch-Stoer method is the Richardson Extrapolation. A brief discussion of these methods is presented 

below (STOER; BULIRSCH, 2002, PRESS et al., 2007). 

 

2.3.1 Modified Midpoint Method 

The modified midpoint method consists of advancing a vector of dependent variables, y(x), from a 

point whose abscissa is x to x+H by a sequence of n sub-steps of size h each, given by Equation (3): 

ℎ =
𝐻

𝑛
 

The number of right-hand side evaluations required by the modified midpoint method is n+1. The 

formulas for this method are: 

𝑧0 = 𝑦(𝑥) 

 𝑧1 = 𝑧0 ∙ ℎ ∙ 𝑓(𝑥, 𝑧0) 

 𝑧𝑚+1 = 𝑧𝑚−1  +  2ℎ ∙ 𝑓(𝑥 + 𝑚 ∙ ℎ,   𝑧𝑚); 

𝑦(𝑥 + 𝐻) ≈ 𝑦𝑛 ≡
1

2
 [𝑧𝑛 +  𝑧𝑛−1 + ℎ ∙ 𝑓(𝑥 + 𝐻, 𝑧𝑛)] 

𝑝𝑎𝑟𝑎 𝑚 = 1, 2, ⋯   𝑛 − 1 
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The variables z are intermediate approximations that march along the h steps, while y_n is the final 

approximation of y(x+H). This is basically a centralized difference or midpoint method, except for the first 

and last points, which give the method the modicated qualifier. 

The modified midpoint method is second-order with the advantage that it asymptotically requires, 

for large n, only one evaluation of the first derivative per step h, instead of the two evaluations required by 

the second-order Runge-Kutta method. In general, the use of the modified midpoint method alone is 

outperformed by the Runge-Kutta method with adaptive step-size control built in. 

The usefulness of the modified midpoint method for the Bulirsch-Stoer technique derives from the 

fact that it obtains, from Equation (4), a detailed result (STOER; BULIRSCH, 2002). It turns out that the 

error in Equation (4), expressed as a series of powers of h, contains only even powers of h: 

y_n-y(x+H)=∑_(i=1)^∞ α_i∙h^2i (5) 

The value of H is held constant, but the value of h changes when n varies in Equation (3). The 

importance of these even power series is that if the usual tricks of combining steps and eliminating higher-

order error terms are applied, two more orders of accuracy can be obtained at a time. This process allows 

higher-order accuracy to be obtained with fewer evaluations of the derivative function, in general half as 

many as with the fourth-order Runge-Kutta method (PRESS et al., 2007). 

 

2.3.2 Richardson Extrapolation 

Richardson extrapolation uses the powerful idea of extrapolating a computed result to the value that 

would have been obtained if the step size had been much smaller than it actually was. In particular, 

extrapolation to step size zero is the desired goal. The first practical ODE integrator that implemented this 

idea was developed by Bulirsch and Stoer, and thus the extrapolation methods are often called Bulirsch-

Stoer Methods (PRESS et al., 2007). 

 

2.4 FORMULATION OF THE BULIRSCH-STOER METHOD 

The sequence of separate attempts to cross the H-interval is made with increasing number of sub-

steps, n. Bulirsch and Stoer originally proposed the following sequence (PRESS et al., 2007): 

  

n=2,4,6,8,12,16,24,32,48,64,96,⋯,[n_j=2n_(j-2) ],⋯ 

 

According to Deuflhard (1983, 1985) the following sequence was more efficient: 

 

n=2,4,6,8,10,12,14,⋯,[n_j=2j],⋯ 

 

In this sequence, for each step, it is not known in advance where it will end up. After each successive 

intermediate step, n, a polynomial extrapolation is performed. This extrapolation gives extrapolated values 
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and error estimates. If the error values are not satisfactory, the value of n is increased. If they are 

satisfactory, one proceeds to the next step and starts again with n=2 (PRESS et al., 2007). 

There is some upper bound, beyond which one concludes that there is some obstacle in the path 

along the interval H, so one should reduce H instead of just subdividing it more finely, because loss of 

accuracy occurs if too fine a subdivision is chosen. In algorithm implementations using this method, n is 

usually taken to be equal to eight. The eighth value in the sequence expressed by Equation (7) is 16, which 

is the maximum number of subdivisions of H allowed (PRESS et al., 2007). 

Error control is enforced by monitoring internal consistency and adapting the step size to match a 

prescribed limit on the local truncation error. Error control is represented in Table 2 by a kind of genetic 

algorithm, expressed in the form of Equation (8), where P represents a "daughter" and x represents its 

"parents". 

 

Table 2. Symbolic representation of Neville's algorithm. 

𝑥0: 𝑦0 = 𝑃0    

(8) 

  𝑃01   

𝑥1: 𝑦1 = 𝑃1  𝑃012  

  𝑃12  𝑃0123 

𝑥2: 𝑦2 = 𝑃2  𝑃123  

  𝑃23   

𝑥3: 𝑦3 = 𝑃3    

 

Neville's algorithm is a recursive way to fill in the numbers in Table 2, one column at a time, from 

left to right. It is based on the relationship between a "daughter" P and its "parents" x, as per Equation (9), 

that this recursion works, because the two "parents" already agree on the points x_(i+1) ⋯ x_(i+m-1). 

𝑃𝑖(𝑖+1)…(𝑖+𝑚) =
(𝑥 − 𝑥𝑖+𝑚 )𝑃𝑖(𝑖+1)…(𝑖+𝑚−1) +  ( 𝑥𝑖 −  𝑥)𝑃(𝑖+1)(𝑖+2)…(𝑖+𝑚) 

(𝑥𝑖 −  𝑥𝑖+𝑚 )
 

Each new result of the modified midpoint integration sequence allows a frame, such as Table 2, to 

be extended by an additional set of diagonals, written as a lower triangular matrix, expressed by Equation 

(10): 

    𝑇00   𝑇10 𝑇11  𝑇20  𝑇21 𝑇22  

⋯     ⋯    ⋯ 

Where T_k0=y_k, and y_k=y(x_n+H) calculated with step size h_k=H/n_k . By substituting P=T, 

x_i=h_i^2, and x=0 into Equation (10), Neville's algorithm can be rewritten as: 

𝑇𝑘,𝑗+1 = 𝑇𝑘𝑗 +
𝑇𝑘𝑗 − 𝑇𝑘−1,𝑗 

(𝑛𝑘 /𝑛𝑘 −𝑗)
2

−  1
 ,      ∀  𝑗  =  0, 1, ⋯ , 𝑘 − 1 
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At each new step size h_i a new row in the table is started, and then the polynomial extrapolation 

fills the rest of the row. Each new element in the table comes from the two closest elements in the previous 

column. The elements in the same column have the same order, and T_kk, the last element in each row, is 

the highest order approximation of accuracy at that step size. The difference between the last two 

consecutive elements is taken as the (conservative) error estimate. This error estimate can be used to adjust 

the step size. A good strategy was originally proposed by Deuflhard (1983, 1985), and later modified, 

details of which can be obtained from the literature (LAPIDUS; SEINFELD, 1971, HAIRER; WANNER; 

NØRSETT, 1993, STOER; BULIRSCH, 2002, PRESS et al., 2007). 

 

3 METHODOLOGY 

3.1 VEHICLE SUSPENSION SYSTEM MODEL 

The modeling of the suspension of a vehicle can be done by considering the vehicle driving over a 

hump. The force that the bump exerts on the suspension is described by the expression: 

𝐹𝑠(𝑡) = 𝑎 ∙ 𝑦(𝑡) + 𝑏 ∙
𝑑𝑦(𝑡)

𝑑𝑡
 

 

Where: 

 F_s (t) = Force on the suspension, [N]; 

 y(t) = Displacement caused by the track surface, [m]; 

 a = Constant; 

 b = Constant. 

 

The suspension model of the vehicle, considering a quarter of its size for symmetry, is represented 

in Figure 3. 

 

Figure 3: Model of the suspension system of a vehicle. 

 
Source: ÇENGEL; PALM III, 2014 (Adapted). 

  

Direction of 

vehicle 

movement 

contact point 

between tire and 

track track surface 

reference 
height 
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In the simplified model, the masses of the wheel, tire, and axle are neglected and, for symmetry, the 

mass m represents a quarter of the vehicle mass. The spring constant k represents a combination of the 

effects of the tire and the suspension spring. The constant c represents the damping constant of the shock 

absorber. The equilibrium position of mass m, when y=0, is x=0. 

The displacement caused by the track surface, y(t), can be obtained from the profile of the track 

surface and the vehicle speed. The equation of motion of the vehicle is obtained by means of the free body 

diagram, shown in Figure 4, considering only the dynamic force, because the static force is cancelled out 

by the gravitational force: 

𝑚 ∙
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑐 ∙

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘 ∙ 𝑥(𝑡) = 𝑘 ∙ 𝑦(𝑡) + 𝑐 ∙

𝑑𝑦(𝑡)

𝑑𝑡
 

 

Figure 4 - Free-body diagram, assuming that 
𝑑𝑦

𝑑𝑡
>

𝑑𝑥

𝑑𝑡
 e 𝑦 > 𝑥. 

 
Source: ÇENGEL; PALM III, 2014 (Adapted). 

 

3.2 SIMULATING THE VEHICLE RESPONSE TO THE RISE OF A SPEED BUMP 

The response of a vehicle to the lift of a given hump with height h and length L, moving at a speed 

v, can be simulated by solving the differential equation of motion, Equation (13). This requires the elevation 

profile of the hump, in this case given by (ÇENGEL; PALM III, 2012): 

𝑦(𝑧(𝑡)) = 5,4366 ∙ 𝑧(𝑡) ∙ 𝑒𝑥𝑝(−4 ∙ 𝑧(𝑡)) 

 

Whereby:  

 𝑦(𝑧(𝑡)) = Spine elevation profile, [𝑚]; 

 𝑧 = Horizontal distance traveled by the vehicle over the elevation, [𝑚]; 

 

The displacement y(t) felt by the suspension is related to y(z(t)), by means of the velocity, where 

z(t)=v(t)∙t. Substituting z(t) into Equation (14) gives: 

𝑦(𝑡) = 97,859 ∙ 𝑡 ∙ 𝑒𝑥𝑝(−72 ∙ 𝑡) 
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For this work we used the data contained in Table 1. Combining Equation (14) with Equation (15) 

and substituting the data contained in Table 1, we obtain the equation of motion for this problem: 

𝑑2𝑥(𝑡)

𝑑𝑡2
+

5.000

240
∙

𝑑𝑥(𝑡)

𝑑𝑡
+

16.000

240
∙ 𝑥(𝑡) = [

489.290 − (33.663.152) ∙ 𝑡

240
𝑒−72∙𝑡] 

 

Table 1. Data used in the solution to the problem. 

Parameter Description Value Unit 

𝑚 Mass of the vehicle 240 [𝑘𝑔] 

𝑐 Damping constant 5.000 [
𝑁 ∙ 𝑠

𝑚
] 

𝑘 Elastic constant of the spring 16.000 [
𝑁

𝑚
] 

𝑣 Vehicle speed 18 [𝑚/𝑠] 

ℎ Spine Height 0,5 [𝑚] 

𝐿 Spine length 1,0 [𝑚] 

 

This is a second order initial value problem, so the solution of Equation (16) was performed using 

the fourth order Runge-Kutta and Dormand-Prince methods (BUTCHER, 2000, ASHINO; NAGASE; 

VAILLANCOURT, 2000) and Bulirsch-Stoer (STOER; BULIRSCH, 2002, PRESS et al., 2007), 

transforming it into a system of two first order equations of the form: 

{
𝑑𝑥1

𝑑𝑡
= 𝑥2    

𝑑𝑥2

𝑑𝑡
= 𝐶1 ∙ 𝑥2 + 𝐶2 ∙ 𝑥1 + 𝑓(𝑥) 

 

4 RESULTS AND DISCUSSION 

The computational time results and final solution estimates are given in Table 2 for various values 

of the integration step for the Runge-Kutta methods of order 4, Dormand-Prince and Bulirsch-Stoer. The 

variation of computational time as a function of step size is shown in Figure 5. 

 

Table 2. Computational time and final estimates of the solution of the one vehicle suspension system problem. 

Step 
Computational Time, [𝑠]* 

𝑅𝐾4 𝐷𝑃 𝐵𝑆 

ℎ = 0,05000 0,00070 0,00200 0,00707 

ℎ = 0,02500 0,00149 0,00473 0,00617 

ℎ = 0,01250 0,00110 0,00200 0,00472 

ℎ = 0,00125 0,00371 0,00199 0,02264 

Step 
Final Estimate 

𝑅𝐾4 𝐷𝑃 𝐵𝑆 
ℎ = 0,05000  1.0355 × 10−1 9,3881 × 10−4 9,3304 × 10−4 
ℎ = 0,02500 9,7124 × 10−3 9,3881 × 10−4 9,3304 × 10−4 
ℎ = 0,01250 1,5333 × 10−3 9,3881 × 10−4 9,3304 × 10−4 
ℎ = 0,00125 9,3310 × 10−4 9,3881 × 10−4 9,3304 × 10−4 

* RK4: Runge-Kutta, ordem 4; DP: Dormand-Prince; BS: Bulirsch-Stoer 
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Figure 5: Computational time for the solution of a vehicle suspension system problem as a function of integration step size. 

 
 

It can be observed in Figure 5 that the behavior of the computational time in relation to the step size 

did not present a well defined functional trend. It was not possible, in this work, to find a reasonable 

explanation for this randomness, although it is thought that it may be an effect of the transient state of the 

computer processor used, influenced by some electromagnetic event. What was effectively verified was 

that different processing time values were obtained for the same problem when the processing was repeated. 

It can be observed, however, that the computational time for the fourth order Runge-Kutta method, 

in general, was the lowest and for the Bulirsh-Stoer method was the highest, with the Dormand-Prince 

method in an intermediate position, but all presented coherent results. On the other hand, these results 

depend on the nature of the problem in relation to the method used. Therefore, for a different problem these 

results can be completely opposite. The final solutions are represented graphically in Figures 6, 7, 8 and 9. 

 

Figure 6. Numerical solutions of the one vehicle suspension system problem using the fourth order Runge-Kutta method (k = 4), 

with fixed step, and the adaptive step methods of Dormand-Prince and Bulirsch-Stoer, with h = 0.05. 
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Figure 7. Numerical solutions of the one-vehicle suspension system problem using the fourth-order Runge-Kutta method (k = 

4), with fixed pitch, and the adaptive pitch methods of Dormand-Prince and Bulirsch-Stoer, with h = 0.025. 

 
 

Figure 8. Numerical solutions of the one-vehicle suspension system problem using the fourth-order Runge-Kutta method (k = 

4), with fixed pitch, and the adaptive pitch methods of Dormand-Prince and Bulirsch-Stoer, with h = 0.0125. 
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Figure 9. Numerical solutions of the one-vehicle suspension system problem using the fourth-order Runge-Kutta method (k = 

4), with fixed pitch, and the adaptive pitch methods of Dormand-Prince and Bulirsch-Stoer, with h = 0.00125. 

 
 

It can be seen in Figures 6 to 9 that, for all methods, there was an improvement in the accuracy of 

the responses of the vehicle chassis displacement as a function of time, with the reduction of the integration 

step. However, it can be observed that the Dormand-Prince method presented, practically, the same 

response, regardless of the size of the integration step. Therefore, this method depends very little on the 

initial integration step, because of the step size adaptation process. In this problem, the fourth-order Runge-

Kutta and Bulirsch-Stoer methods presented feasible solutions only for h<0.01, in the domain 0≤t≤0.25. 

 

5 CONCLUSIONS 

It is essential to know the nature of the problem to be solved, to properly choose the numerical 

method and the size of the integration step to be used. The higher the order of the integration method, the 

greater the possibility of using a larger step size with desired accuracy. 

The Dormand-Prince method showed virtually the same response regardless of the integration step 

size. Therefore, this method depends very little on the initial integration step, because of the step size 

adaptation process. 

Methods with a step adaptation algorithm, such as the Bulisrch-Stoer and Dormand-Prince methods, 

are not very sensitive to the initial step size because they are modified throughout the process to maintain 

accuracy. 

In general, all types of methods can be applied to any initial value problem, each with its own set of 

pros and cons, which should be understood before they are used. 

In all numerical methods, generally, accuracy increases with decreasing step size, especially in 

fixed-step methods. Therefore, adaptive pitch methods such as the Dormand-Prince and Bulirsch-Stoer 

methods generally provide more accurate estimates, provided they are used properly. 
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Therefore, it is concluded that knowledge of the nature of the problem is critical in choosing the 

solution method and the size of the integration step to obtain adequate results. 
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