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ABSTRACT 

The identification of systems seeks to use 

techniques that, from input and output signals, can 

find a dynamic model that describes the system. 

Among the simplest identification techniques are 

those based on step response. In this work, the 

Harriot method is approached, a graphical method 

that identifies over dampened second-order models. 

This study presents a numerical solution to find the 

time constants of the model, allowing its application 

in a computational and automated way. To validate 

the proposed approach, it was applied in a motor-

cogenerator didactic module and compared with 

other deterministic identification techniques, such 

as Ziegler-Nichols, Hägglund, and Sundaresan, to 

compare the results. The results showed that the 

numerically resolved Harriot method performed 

equivalently or even better compared to the other 

deterministic identification techniques. The R² and 

Akaike Information Criterion (AIC) were used as 

metrics to quantify the performance of each model. 

It was concluded that the numerical solution 

proposed for the Harriot method allows its 

computational application and presents a promising 

performance. Future work may explore the use of 

this technique as part of an auto-tuning scheme for 

PID controllers. 
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1 INTRODUCTION 

The identification of dynamical systems is a discipline closely linked to the automatic control 

of systems. To the extent that the most widespread techniques of linear controller design commonly 

start from a model of the system to be controlled, obtaining such models is necessary for the design of 

controllers (Cobos, 2021). 

Although it is possible to obtain models from a phenomenological study of the systems, in 

general, such models are difficult to obtain, because they depend both on a high knowledge of the 

physical, chemical, and even biological laws that govern the system, as well as on parameters that are 

often difficult to measure. That said, the identification of systems, in turn, seeks to use techniques that, 

from the knowledge of the input and output signals of the system, can find a dynamic model that 

describes it (Ljung, 2009). 

Among the simplest identification techniques are those that are classified as deterministic based 

on step response. Such techniques have weaknesses because they ignore the presence of stochastic 
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components in the collected signals and, in general, start from the assumption of a known structure for 

the model, which, in practice, is not always true. Such techniques are still widely used, especially in 

an industrial environment, for their ease of use and the practicality of the tests that, usually, only 

involve taking the mesh in question to the manual mode, at a point of operation, and giving an increase 

in the manipulated variable, thus generating a step. The reaction curve to this step stimulus is collected 

and, from it, a model is obtained (Coelho, 2016). 

Among these classical techniques, this work will address Harriot's method, which is a graphical 

method that identifies over dampened second-order models: 

𝐺𝑚(𝑠) =
𝐾

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
 

where 𝐾 is the static gain of the system, 𝜏1𝜏2 and are the time constants and L is the dead time. 

Harriot (2007) showed that for different combinations of time constants for the overdamped 

second-order model when plotted with time normalized by the sum of the time constants, 𝑡/(𝜏1 +

𝜏2) the reaction curves always intersect approximately at the point 𝑦(𝑡)/𝑦𝑓 = 0,73, which corresponds 

to 𝑡/(𝜏1 + 𝜏2) = 1,3, as exemplified in Figure 1, where y(t) is the process variable and 𝑦𝑓 is its regime 

value in response to a step input 

 

Figure 1: Normalized response for over dampened second-order systems.  

 

Source: author. 

 

Thus, having the step response, one can find the time value 𝑡73 where the reaction curve reaches 

73% of its final value and, for this instant: 

𝜏1 + 𝜏2 =
𝑡73

1,3
 

At the same time, Harriot also shows that the greatest dispersion in the curves happens at the 

point where the normalized time is equal to 0.5. By calling this point 𝑦50 = 𝑦(𝑡50) with, 𝑡50 =

0,5(𝜏1 + 𝜏2), one can graphically find the value of the time constants using the graph shown in Figure 

2. 
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Figure 2: Harriot curve. In the notation of the source 𝑦1 = 𝑦50𝑦∞ is the permanent regime 𝑦𝑓and  𝜏𝐻1 and 𝜏𝐻2 value and 

are the time constants of the second-order model, further assuming that the first constant is greater than or equal to the 

second.  

 

Source: Jakoubek (2009). 

 

The fact that it depends on the analysis of a graph to find the relationship between the constants 

allows the use of the method manually but limits its use in an automated way in a computational 

implementation. Thus, the present work presents an alternative by numerical solution to find the time 

constants of the model which, in turn, allows the Method to be applied in a computational and 

automated way. 

 

2 FORMULATION  

To formulate a numerical solution to Harriot's method, one starts from the step response of a 

second-order system with two real and different poles. Without loss of generality, consider that the 

dead time of the system is zero and that the system has gained unitary. In this case, we have: 

𝑦(𝑡) = 1 −
𝜏1

𝜏1 + 𝜏2
𝑒

−(
𝑡

𝜏1
)

+
𝜏2

𝜏1 + 𝜏2
𝑒

−(
𝑡

𝜏2
)
  

Doing:𝑡 = 𝑡50 = 0,5(𝜏1 + 𝜏2)  

𝑦50 = 1 −
𝜏1

𝜏1 + 𝜏2
𝑒

−(
𝜏1+𝜏2

2𝜏1
)

+
𝜏2

𝜏1 + 𝜏2
𝑒

−(
𝜏1+𝜏2

2𝜏2
)
  

Knowing the value of the sum of the time constants, 

𝜏1 + 𝜏2 =
𝑡73

1,3
, 

One can write 𝜏2 in terms of 𝜏1 and solve numerically. 
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Doing the substitution to rewrite the output value as a 𝑦(𝑡) = 𝑦50 function of the first time 

constant and defining 𝑓(𝜏1) as the resulting function: 

𝑓(𝜏1) = 1 −
1,3𝜏1

𝑡73
𝑒

−(
𝑡73

2,6𝜏1
)

+
1,3 (

𝑡73

1,3 − 𝜏1)

𝑡73
𝑒

−(
𝑡73

2,6(
𝑡73
1,3

−𝜏1)
)

− 𝑦50 

one can solve iteratively up to convergence using Newton's method:𝑓(𝜏1) = 0 

𝜏1
𝑘+1 = 𝜏1

𝑘 −
𝑓(𝜏1

𝑘)

𝑓′(𝜏1
𝑘)

 

Where 𝑓′(𝜏1
𝑘) represents the derivative of the function evaluated in the k-th estimate of 𝜏1. The 

estimate is updated until it reaches a tolerance criterion or a maximum number of iterations. 

 

3 RESULTS AND DISCUSSIONS 

To validate the proposed solution by applying it to the identification of a dynamic model for a 

physical system, a motor-cogenerator didactic module was used, as seen in Figure 3. The module, 

described in detail in Pedrisch et al. (2022) is composed of a pair of DC motors where one of them 

must have its speed controlled and is coupled to a second motor that, acting as a tacokeur, provides 

speed feedback, allowing control in a closed loop. 

 

Figure 3: Motor-tacoker module used to validate the proposed approach. 

 

Source: Pedrisch et al. (2022). 

 

The motor-tacoker is a stable open-loop system with an underdamped behavior. Doing the 

phenomenological modeling (Ahmad et al., 2014) it is possible to notice that each DC motor is a 

second-order system, however, by the difference in speed from the mechanical dynamics to the electric 
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ones (much faster), the system can usually be approximated even by a first-order model (Pedrisch et 

al., 2022). 

For the same system, the techniques of Sundaresan, Hägglund, and Ziegler-Nichols were 

applied, deterministic identification techniques well established in the literature, and all three also use 

step response. The Ziegler–Nichols and Hägglund methods identify first-order models with dead time, 

the former being a method based on tangent lines and the latter on points. They were included in the 

comparison because the work of Pedrisch et al. (2022) uses a first-order model for the system. 

Sundaresan's method, in turn, identifies a second-order model over-dampened with dead time, included 

for fairer competition with Harriot's method, and also by the phenomenological model of a DC engine 

being, in fact, second-order. The three methods are presented in detail in Jakoubbek (2009) and Coelho 

(2016). After applying the methods, Table 1 presents the models obtained in each technique: 

 

Table 1: Model obtained by deterministic techniques. 

Technique Model 

Ziegler-Nichols 
𝐺1(𝑠) =

0,705

0,879𝑠 + 1
𝑒−0,059𝑠 

Hägglund 
𝐺2(𝑠) =

0,705

0,631𝑠 + 1
𝑒−0,069𝑠 

Sundaresan 
𝐺3(𝑠) =

0,705

(0,760𝑠 + 1)(0,032𝑠 + 1)
𝑒−0,032𝑠 

Harriot Numeric 
𝐺4(𝑠) =

0,705

(0,699𝑠 + 1)(0,037𝑠 + 1)
 

 

The four models obtain the same static gain since they all do so by the ratio between the 

variation in the permanent regime of the output and variation in the permanent regime of the input. 

The time constants of the first-order models and the dominant time constants of the second-order 

models have distinct but congruent values in terms of magnitude, with a mean of 0.742 seconds and a 

standard deviation of 0.105. In the three cases where the model includes transport delay, the delay is 

small when compared to the time constant. 

The validation of the models obtained by the four techniques was performed by applying a 

PRBS signal (pseudo-random binary signal) in the motor-tacoker system and comparing the response 

of each model with the response of the real system. Figure 4 shows the comparison of the responses 

of each model with the response of the real system. Visually, it is possible to verify that the Harriot 

method presents adequate performance, consistent with the other methods, as expected by the models 

obtained. 
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Figure 4: Above experimental response of the system compared with the responses of the identified models. The response 

of the motor-tacoker is presented in blue, the model obtained by Ziegler-Nichols in red, the model by Hägglund in yellow, 

the model by Sundaresan in purple, and the model by the proposed numerical version of the Harriot method in green. Low: 

PRBS signal applied to the system.  

 

Source: author. 

 

To quantify the performance of each model and rank the results obtained, two figures of merit 

were used: the R² and the Akaike Information Criterion (AIC). R² is a metric that ranges from 0 to 1 

and represents how much the model describes the variance of the data. A unitary result represents a 

perfect description. The AIC measures the loss of information and penalizes models with more 

parameters. A more negative result describes a better model.  

The values of the metrics obtained from the response to the PRBS are presented in Table 2, 

which shows that the numerically solved Harriot method as proposed has a performance not only 

equivalent but even slightly superior to other deterministic identification techniques that use step 

response. 

 

  



 

 
 

A look at development  

Numerical solution for finding time constants in Harriot's method for identifying overdampened 

second-order systems 

Table 2: Comparison between deterministic techniques through the mé. 

Technique R² AIC 

Ziegler-Nichols 0,9505 -1543,2 

H 0,9655 -1615,5 

Sundaresan 0,9730 -1663,1 

Harriot Numerical 0,9815 -1741,1 

 

4 CONCLUSIONS 

The present work was able to present a numerical solution for the Harriot Method, allowing its 

use computationally. The solution is based on analytically finding the step answer to an overdamped 

second-order system and, using the point of coincidence and the point of greatest dispersion in Harriot's 

normalized graph, it is possible to solve the equation in terms of one of the time constants using 

Newton's method. 

When compared to other established deterministic identification techniques, the method 

performs well and still has the advantage of being a point-based technique, less sensitive to 

measurement noise than techniques based on tangent lines, thus being a promising method to meet a 

specific niche of problems within the identification of systems. 

In future work, it is intended to use the technique as part of the automatic tuning scheme of PID 

controllers. 
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