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ABSTRACT 

Due to the complexity and high financial costs 

involved in production processes, the steel industry 

can benefit from applications of intelligent systems, 

capable of performing automated activities. This 

research paper addresses a description of the 

process of creating a data-driven computational 

system to develop a computational thermal model 

of a real steel plate reheating furnace. Sufficiently 

accurate computational models can be used in 

conjunction with combustion control optimization 

techniques, such as model-based predictive control 

(MPC), or even a Digital Twin of the combustion 

system of a plate reheating furnace. The tool can be 

used in predictive failure diagnosis, fundamental for 

the maintenance and operation teams responsible 

for asset management. For this development, 

Recurrent Artificial Neural Networks have been 

widely applied, validating the existence of series 

that have temporal links between their samples, a 

typical case of monitoring industrial process 

variables. To meet the proposed objective, the 

performance of models based on recurrent neural 

networks of the Long Short Term-Memory 

(LSTM), Gated Recurrent Unit (GRU), and 

Temporal Convolutional Network (TCN) type was 

analyzed. The results were evaluated under 

different prediction horizons, since such techniques 

demand models capable of accurate predictions that 

are several steps ahead, premised on prediction 

capability. 

 

Keywords: Furnace,  Model neural l, Prediction 

ahead, Temperature,  Reheating,  Steel slab.

 

1 INTRODUCTION 

The reheating furnaces aim to heat steel plates in a controlled way, at temperatures close to 

1200°C, for their proper processing in the hot rolling of strips [1]. Modern reheating furnaces are 

dynamic, nonlinear, and complex systems with heat transfer performances that can be greatly 

influenced by operating conditions [2].  Heating must be homogeneous to obtain the highest 

productivity, lowest possible energy consumption, and lowest rates of pollutant emissions [3]. 

The temperature of the plates cannot be measured directly inside the furnace and is inferred by 

mathematical models of heating, which are not trivial, due to factors such as the complexity of the 

parameters, thermal hysteresis, and the strong coupling existing between the heating zones [4].  The 

process of reheating steel plates is responsible for approximately  15 to  20% of the total energy 

consumed in a steel mill and for 70% of the energy consumed in the rolling process [5].  

In this context, there is a bias for the application of control systems that guarantee the maximum 

performance of the equipment. Intelligent systems based on computational models can be applied in 

the reliable reproduction of the thermal dynamics of a reheating furnace.  The tool can be useful for 
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explaining heating optimization problems or even predicting combustion system failures. Applications 

of deep learning neural networks have been studied to solve the problem of energy consumption in 

furnaces. [6] established a prediction model based on Gated Recurrent Unit (GRU) type recurrent 

networks to predict the internal temperature of the furnace using time series d the temperatures, fuel, 

and air.  An interesting proposal of temperature prediction in a reheating furnace, using a convolutional 

temporal network with learning transfer between the zones of a furnace heating [7]. Already [8], 

proposed a new method of predicting furnace temperature using the optimized kernel extreme learning 

machine (OKELM).  [9] It presents a new approach to the multivariate linear regression spatiotemporal 

variable parameter zoning model (MLR-VPST) applied to temperature prediction.  

Knowing that the s temperature s inside a  plate reheating furnace can m be predicted s due to 

the temporal characteristic, this research proposes the neural modeling of seven zones of heating of 

mobile beam-type furnaces and pulsating burners using deep learning networks. The latter is a 

differential of the research, since in this application there are no continuous measurements of the air 

and gas flows per burner, increasing the challenge in the process of thermal modeling of the heating 

zones. The goal is to have accurate models capable of making predictions step ahead. 

 

1.1 DEEP LEARNING NEURAL NETWORKS 

1.1.1 Long-Short Term Memory 

This type of neural network was introduced by [10] for the explicit purpose of helping to solve 

the unstable gradient problem [1  1].  The long-term memory network, usually called  LSTM, is a 

special type of recurrent network, capable of learning long-term connections. This recurring network 

model can store larger amounts of information, pertaining to past inputs, while maintaining the 

relevance of recent states. 

In short, the architecture of LSTMs consists of a set of memory cells connected in a  recurring 

way. A cellular unit, see "Fig. 1", is composed of four gates, which in turn are activated by 

mathematical functions. 

 

Fig. 1.  LSTM Cell 
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The central point of LSTMs is the state of the cell. The main horizontal line (C_t ) that passes 

through the top of the diagram is known as long-term memory and is responsible for carrying the state 

of the cell, traversing the entire chain with only a few linear interactions. The inputs of the cells are 

considered augmented, due to the concatenation of the new information and x_t h_(t-1) that represents 

the output of the previous state. The interactions of sigmoid functions and element-by-element vector 

multiplication operations function as gates, adding or removing information to the cell state.  In the 

initial part of the cell, we have the Forgot Gate seen in (1), where the output is a sigmoid function that 

controls what information will be forgotten. 

 

   𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 (1)  

 

In the central part,  the Input Gate unit appears or the input section (2), but in this particular 

case, a hyperbolic tangent function (3)  calculates a possible context, and the  Cell Up unit   (4) controls 

the addition of this new context to the memory unit.   

 

 𝑖𝑡 =  𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 (2)  

 𝐶�̃� =  𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 (3)  

 𝐶𝑡  =  𝑓𝑡 ⨀ 𝐶𝑡−1 + 𝑖𝑡 ⨀ 𝐶�̃� (4)  

 

Finally, the Output Gate (5), controls the information that follows for outpu〖_t〗, being also, 

the input of the next cell in time〖_(-1)〗. 

 

 𝑜𝑡 =  𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜 (5)  

 

1.2 GATED UNIT RECURRENT 

The GRU is a type of recurrent neural network that uses so-called update and restart gates. 

They are two vectors that decide what information should be passed to the output. What's special about 

them is that they can be trained to store information from a long time ago, without washing it away in 

time or removing information irrelevant to the forecast [12]. 

As proposed by [13] the  GRU makes each recurring unit adaptively capture the dependencies 

of different time scales. The flow of information is modulated by the "gates" in a similar way to LSTMs 

(Long-Short Term Memory), within the cellular unit, but without having separate memory cells.  "Fig. 

2" features a GRU cell unit. 
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Fig. 2. GRU Cell 

 

 

The mathematical operations of the inner workings of the GRU recurring unit are presented 

below.  The  Update Gate memory updates control gate is calculated by (6).  Where, is the x_t input 

of new information, and is the output of the previous state that contains the past information? Both are 

multiplied by their respective weights〖_(-1)〗sW_t  and. The result is summed and then activated by 

a sigmoid function〖 U〗_t. 

 

 𝑧𝑡 =  𝜎(𝑊𝑡𝑥𝑡 + 𝑈𝑡ℎ𝑡−1) (6)  

 

The Update Gate supports the cellular unit that determines the amount of past information that 

will be retained, eliminating the risk of the gradient disappearing  [14].  The gate of oblivion,  Reset 

Gate, is controlled by (7). 

 

 𝑟𝑡 =  𝜎(𝑊𝑡𝑥𝑡 + 𝑈𝑡ℎ𝑡−1) (7)  

 

The information calculated and contained in h ̃_t (8), are possible candidates to enter the state 

of memory.  Baseada in the new entries and x_t  n the gate of oblivion, which in turn will allow or not 

the information of the previous state to be added in the present state〖_〗. 

 

 ℎ̃𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 +  𝑈(𝑟𝑡  ⨀ ℎ𝑡−1)) (8)  

 

Finally, the current memory h_t will be updated in Update Memory (9). 

  

 ℎ𝑡 =  𝑧𝑡 ⨀ ℎ𝑡−1 + (1 − 𝑧𝑡 ) ⨀ ℎ𝑡 (9)  
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1.3 TEMPORAL CONVOLUTIONAL NETWORK 

The convolutional empirical TCN  (Temporal Convolutional Network) is quite efficient in 

applying sequential tasks to the test. This type of deep learning network employs circumvolutions and 

casual dilations in its structure, so it is suitable for sequential data with temporality [15]. 

Some characteristics define TCN.  Calculations are performed without layers, which means 

that each time step is updated simultaneously, rather than updating sequentially by frame.  The 

architecture can take a sequence of any length and map it to an output sequence of the same length. 

Convolutions are causal, this means that there is no "leakage" of information from the future to the 

past.  The operation of a TCN is based on two principles: the network uses a fully convolutional one-

dimensional architecture, where each hidden layer is of the same length as the input layer [16].  A 

mask for fills with zeros is applied to each hidden layer to keep subsequent layers at the same length 

as the previous ones [17].   In summary, TCN is the sum of FCN 1D + causal convolutions.  

The expertise of TCN  is in the application of dilated convolution, which is a  convolution 

where a  filter is applied over an area larger than its length, skipping input values with a certain step, 

ensuring that the network covers more information with the increase in the size of the receptive field.  

According to the works of [1 8]  [1 9] the dilated convolutions result in the exponential growth of the 

receptive field with only a few layers, that is, the number of delays that the network can see to predict 

its output, preserving the input resolution in every network, as well as computational efficiency.  

Formally, for a one-dimensional  sequence of input } {x and a filter  the operator { ∈ R^n f:{0,…,k-

1}→R,  of the dilated convolution applied to sequence {s} can be definedF} as (10): 

   

  

𝐹(𝑠) = (𝑥 ∗𝑑 𝑓)(𝑠)

= ∑ 𝑓(𝑖). 𝑥𝑠−𝑑.𝑖

𝑘−1

𝑖=0

 
(10)  

 

Where, is the d dilation factor, is the size of the filter,k ands-d.I explain the direction that the 

convolution will be applied. If it is equal to 1 the dilated convolution is reduced to a regular 

convolution.  The receptive field in the TCN is directly linked to the depth of the network, as well as 

the size of the filter and the dilation factor.  To prevent the deeper network structure from complicating 

the learning process, a residual connection "Fig. 3" is added to the output.  Because the input and 

output can have different widths, the connected residue uses a 1 x 1 convolution to ensure that the 

addition operation receives the same tensors [20]. 
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Fig. 3. Dilated causal  convolution employed in the residual block 

 

 

The Rectified Linear Unit (ReLU), is an activation function that returns to 0 if it receives any 

negative input, but for any positive value { it returns x}to the same value as the input.  

 

2 STUDY EQUIPMENT 

With a production capacity of 400  tons per hour and divided into nine heating zones, control 

regions of has temperature without a physical barrier, with a total of 20 pairs of side burners and 21 

ceilings, the furnace studied here, uses as fuel industrial gas, which is a mixture of steel gases, with 

controlled calorific value. As an oxidizing agent,  atmospheric air is used, which is reheated in a heat 

recovery system. The transport of the plates inside the furnace is using walking beams (Walking 

Beam).  "Fig. 4" presents a side view of the furnace and its main components. The plates move from 

loading to dewatering in a controlled manner as specified for thermal purposes. The flow of the gas ex 

post-combustion is contrary to the flow of the plates and controlled by an existing valve in the exhaust 

channel. A heat recovery system is installed in the exhaust of the gases, to heat the combustion air. 

 

Fig. 4. Side view of the oven and its components 

 

 

The furnace has three heating zones (Z), subdivided into upper and lower "Fig. 5".  Heat is 

transferred to charge using conduction and radiation, where the mechanism of radiation is predominant 

[21].  Each zone has its dedicated temperature controller  (TIC) and the temperature rise occurs 

gradually along the furnace, where each heating zone has its thermal objective. 
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Fig. 5.  Zones heating and system dynamics. 

 

 

In each heating zone, temperature variations are measured by thermocouple-type sensors and 

sent to the thermal model, which estimates the temperature of each product inside the furnace. Thus, 

the optimized control model is fed back with the thermal energy application demand, according to 

"Fig. 6".  The burners are individually actuated using an On/Off control valve. The setup for each 

burner is sent on a time basis, and a frequency-modulated technique (pulse flame) is applied [2 2], so 

that the burners are switched between the two states, off or on, based on a cycle of determined work, 

which controls the input of heat to the process. The input heat demand determines the imposed cycle, 

which is the time when the burner will be on or off. 

 

Fig. 6. Control system configuration 

 

 

3 SYSTEM MODELING  

To construct the forecast model, data were collected from a plate reheating furnace after 

maintenance. Where it was carried out The cleaning of the gas pipes, orifice plates, valves, and 

calibration of the burners. All on-off control zones were modeled. The data sets were individually 

processed for each control zone of temperature. 

 

3.1 BUILDING THE DATABASE 

The system information for building the database for training and testing was collected between 

08/13/2022 and 08/14/2022 through the IbaAnalyzer software. The sampling time was 1 second, fast 

enough to capture the dynamics of the furnace air, gas, and exhaust flows. Each dataset has 43,201 
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samples.  Before any manipulation of the data, an exploratory analysis was previously performed to 

evaluate the consistency of the data. Avoiding, working by contaminated or missing data. 

The selection of the input variables was based on the operational behavior of the furnace, on 

the tacit knowledge of the process, and through statistical analysis of autocorrelation, which made it 

possible to reduce 23% of the database of predicted characteristics, due to the low correlation with the 

variable of interest or strong correlation with each other.    The technique was useful for database 

optimization. 

Some variables are common to all zones of the furnace, but each zone has unique input 

variables. Common variables are general airflow,  general fuel flow,  furnace exhaust flow and valve 

position, and exhaust control of the gases to the chimney. The individual variables for each zone are 

the s powers applied to each burner zone and the temperature of the adjacent zone, following the flow 

of gases. The total value of the input variables per model was modified according to the number of 

burners.  The data were separated into 70% for model training and 30% for validation.  

 

3.2 NORMALIZATION OF DATA  

To achieve high performance in machine learning, data must be pre-processed for 

normalization [2, 3].  Here, all data were subjected to pre-processing, since the values of the chosen 

variables are in different ranges.  There are several well-known normalization techniques like Simple 

Feature Scaling, Min-Max, Z-score, etc.   The preprocessing strategy was the same for the input and 

output variables of the combustion system and consisted of standard normalization, which centralizes 

the data on the zero mean with a standard deviation of 1z (11).  Where, are the data to be observed, μ 

is the mean and σ the standard deviation. X 

  

 𝑧 =
𝑋 −  𝜇

𝜎
 (11)  

 

3.3 DATA PREPARATION FOR KINGDOM SUPERVISED 

Through historical data, models based on deep learning neural networks can develop a 

functional relationship between the input resources and the future values of the objective variable. The 

resulting model can provide predictions about the objective variable at time points in the future.  The 

learning of the models is based on the functional relationship between the sis temporal rie and can be 

expressed mathematically by (12).   Where is the 〖_〗input characteristic vector observed in time 

and is the prediction y ̂_(t+k)at a future time point?   
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�̂�𝑡+𝑘

= 𝑓𝑘 (𝑥𝑘−𝑤, … , 𝑥𝑡−1, 𝑦𝑘−𝑤, … , 𝑦𝑡−1) 
(12)  

 

Wherey ̂_(t+k)   and prediction of the objective variable for the time t+k.  k is the period in the 

future for which the target variable is to be predicted.  They are already 𝑦𝑘−𝑤, … , 𝑦𝑡−1  the target values 

observed from time  𝑡 − 𝑤 to 𝑡 −,. 𝑥𝑘−𝑤, … , 𝑥𝑡−1 are the characteristic vectors of inputs, observed from 

time 𝑡 − 𝑤 a 𝑡 − 1. 𝑓𝑘 It is the function trained by deep learning models.  

For the supervised training of temporal prediction models, it is necessary to prepare the 

database containing the historical series in advance.  The entry in the model of have a uniform length 

[24].  A  fixed-size sliding time window applies.  Predictions of future data can be one step forward or 

several steps forward.  The sequence is temporal (13) and exemplifies a fixed look-back window in 4 

past times with a prediction of n steps ahead. 

 

 𝑥(𝑡 − 3), 𝑥(𝑡 − 2), 𝑥(𝑡 − 1), 𝑥(𝑡)

→  �̂� (𝑡 + 𝑛) 

(12)  

 

3.4 ARCHITECTURES 

In this scientific research, three types of deep learning neural networks were used, two recurrent 

LSTM and  GRU, and one onvolutional C (TCN). The architecture and configuration of the networks 

were maintained similarly, in the number of layers, training optimizer, and learning rate. The objective 

was to evaluate the performance between the proposed networks as a temperature prediction tool on 

the same basis of comparison.  

The tests were performed with the length of the "look-back" sliding window 25 steps back.  

The predictions were made with a single step, 60 and 120 steps ahead.  Each step represents 1 second. 

The prediction horizons were chosen based on the operating time of the burners. For the loss function 

we use the EAM and as an optimizer the  Adam algorithm, which is an optimization method based on 

the descent of the stochastic gradient based on the adaptive estimation of first and second-order 

moments [25].   

 

3.5 PERFORMANCE METRICS 

To measure the performance indices,  normally, the errors that it presents are analyzed, that is, 

the comparison of the actual output with the value predicted by the model in the same instant of time, 

in the case of time series.  Both the mean square root of error (RMSE) and the absolute mean error 
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(EAC) are regularly employed as performance evaluation criteria [27].  Sendo these metrics used here 

as evaluative parameters, where:  best value = 0; worst value = +∞.  

The absolute mean error, MAE is calculated from the mean of the absolute errors, that is, we 

use the module of each error to avoid underestimation, because the value is less affected by especially 

extreme points (outliers). Each error can be interpreted as the difference between the actual value and 

the predicted value (15). 

 

 𝑀𝐴𝐸 =
1

𝑛𝑡𝑠
 ∑ |𝑦𝑖{𝑡𝑠} −  �̂�𝑖|

𝑛𝑡𝑠

𝑖=0

 (15)  

 

The square root of the mean error, RMSE (16) is often used in time series because it is more 

sensitive to larger errors, due to the quadrature process that produced it. 

 

' 𝑅𝑀𝑆𝐸 = √
1

𝑛𝑡𝑠
 ∑(�̂�𝑖−𝑦𝑖{𝑡𝑠})2

𝑛𝑡𝑠

𝑖=0

 (16)  

 

4 FINDINGS  

The results presented now refer to the seven "Z" warming zones,  with predictions of 1, 60, and 

120 steps ahead. The results are presented in Table I to provide a quick visualization of the performance 

of each model. The amount of graphic information generated was limited, so it was decided to 

graphically present the results of zone 3 because the behavior of the rest was similar.  

 

Table 1: Results of Predictions 

Z Model 
Step 1 60 steps               120 steps           

MAE RMSE MAE RMSE MAE RMSE 

1 

GRU 1,262 1.710 2,730 3.7 56 
4.1 

63 
5,782 

LSTM 2,744 3,385 4.999 5,898 7,385 9.172 

TCN 4,394 6,106 
4.4 

32 
6,706 

5.2 

82 
8,536 

2 

GRU 1,061 2.319 1,757 2,372 2,108 2,936 

LSTM 2,971 3,607 
4.0 2 

2 
4,719 5,488 6.267 

TCN 3,774 5,155 3,298 4,821 3,551 5,223 

3 

GRU 1,343 1,861 3,031 3.997 4,689 5,986 

LSTM 2,833 3,515 5,392 6,183 7,908 9,139 

TCN 3,162 4,048 3,621 4,784 4,697 6.346 
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4 

GRU 0.808 1,064 
1.0 

59 
1,360 1.682 2,138 

LSTM 1,718 2,212 
1.9 

98 
2,522 2,601 3,134 

TCN 2,482 3,183 3.007 3,642 3,950 4,688 

5 

GRU 1.083 1,410 1,062 1,404 
2.1 

86 
2,633 

LSTM 3.232 4,435 3,623 5.287 4,309 6,045 

TCN 
3.0 3 

3 
3,976 3,657 4.3 24 

4.3 

86 
5.3 65 

6 

GRU 0.898 1.101 0.99 1,177 1,495 1,870 

LSTM 3,012 3,805 3,688 4,506 4.356 5.224 

TCN 3,102 4,196 3,623 4,818 4,611 5.8 58 

8 

GRU 0.331 0.4 2 2 0.408 0.462 0.415 0.552 

LSTM 1,690 2,104 1,884 2.280 2,062 2.490 

TCN 1,141 1,411 1,260 1.5 2 2 1,539 1.8 63 

 

This 'fig.' (8), (9), and (10), present the results of zone 3 at a predetermined period within the 

test data. Repetitively the figures are arranged in 1 step forward, 60 steps, and 120. 

 

Fig. 8.  Zone 3 temperature with 1 step forward 

 

 

Fig. 9.  Zone 3 temperature with 60 steps ahead 
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Fig.  10.  Zone 3 temperature with 120 steps ahead 

 

 

In general, we see a positive performance of the models for this application, since in the z worst 

cases, the errors in the predictions did not exceed 10°C, with emphasis on the  GRU network that 

reached the lowest MAE and RMSE values in all horizons.   It is observed that the farther away the 

prediction horizon is, the more degradation of the models increases.   Some points of emphasis are 

observed in the prediction of the model of zone 08, where the results are satisfactorily superior to those 

of the other zones. In this case, even at such distant horizons, the predictions were accurate. There is a 

sharp variation in the predictions of TCN, but it is believed to be possible to adjust through adjustments 

of the network control parameters. 

 

5 CONCLUSION  

This paper described the creation of computational models based on deep learning neural 

networks, applied in predicting the internal temperature of a real steel plate reheating furnace that uses 

pulsating burners in its thermal control system.  The approach consisted of the construction of 21 

models to predict the temperatures of 7 heating zones.  The prediction accuracy of each model has 

been tested for three different horizons, as one of the goals of creating these models is to employ them 

along with advanced control and optimization techniques.  The results show a grandiose ability of these 

models to accurately predict temperatures for short, medium, and long forecast horizons. 

The importance of quality and treatment of the database was fundamental to obtaining positive 

results because each model was properly analyzed to provide the expected robustness, as well as the 

reduction of the amount of data, which has a total influence on the computational processing capacity. 

The results show a grandiose ability of these models to accurately predict temperatures for short, 

medium, and long forecast horizons. It is important to highlight that the models must be trained for an 

optimal performance one step ahead, that is, in the short term, because as we advance to predictions of 

medium or long horizons, we have the degradation of the prediction.  
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