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ABSTRACT 

The Timoshenko-Ehrenfest beam theory is widely applied in structural analysis to simplify mathematical 

modeling when the beam can be considered as a long structural element. In the literature, the yield 

strength of the material is the limit state in most applications of this structural element. However, in some 

situations, this design limit state can be improved to the plastic limit, increasing the structural capacity to 

support loads. Therefore, in this article, the elastic and plastic bending capacity of the Timoshenko-

Ehrenfest beam is presented in terms of its concepts and formulation. This theory was applied to a 

rectangular beam with a simply supported cross-section subjected to a point load. In this specific example, 

the results show that when the design limit state is changed from the yield limit to the plastic limit, there is 

a 50% increase in the bending capacity of the beam. Based on the comparison between the two limit states 

carried out here, the bending capacity of a structural system can be improved in terms of an upper limit 

state, allowing the designer to increase the potential of a beam-like structure. 
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INTRODUCTION  

Massive research has been conducted in the field of plasticity theory (including boundary analysis) 

since the second half of the last century. Hill (1950) presents the history of Plasticity Theory 

contextualized on a physical-mathematical level. He highlights the elastic-perfectly plastic material, yield 

criteria, hardening by cold deformation, stress-strain constitutive relations, general theorems and plastic 

anisotropy. It also presents solutions for elastoplastic solids (bars, shells, tubes) subjected to combined 

stresses. 

In his work, Drucker (1956) shows the theory of perfect plasticity, linear and non-linear 

incremental theories for materials hardened by cold working. The theorems of minimum potential energy 

and minimum complementary potential energy are derived for stress-strain relationships, as well as 

establishing absolute minimum principles. 

(1959) presents a new parametric form of equilibrium equations for structures that shows their 

relationship with compatibility conditions, the representation of static and kinematic principles as dual 

linear programming problems, the existence of collapse mechanisms and the representation of 

compatibility relations as Kirchoff cycle conditions for an associated graph. 

Picón and Cañas (1987) introduce a procedure for Limit Analysis of two-dimensional frameworks 

using linear programming techniques and concepts, which models a small number of variables and 
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constraints. They present two examples of two-dimensional frameworks. For the first, only one 

proportional and monotonic load is applied; for the second example, six loads are applied externally to the 

frame considered. 

The work produced by Soares (2006) presents a finite element technique for planar frame 

applications using kinematic formulation by linear programming. In addition, a CAD (Computer Aided 

Design) system is developed and used as a pre-processor and post-processor for the formulated limit 

analysis technique, which is implemented using a C++ application. 

In his work, Pasquali (2008) uses an alternative to possible numerical difficulties when close to the 

collapse load, which consists of asymptotically simulating the elastoplastic behavior using a non-linear 

elastic relationship. Several examples of structures using resistance criteria, such as von Mises-Hencky 

and Drucker-Prager, are modeled. The results obtained are compared with existing literature. In addition, 

the non-linear elastic relationship is used to determine the strength domain in mediums with different 

levels of porosity. In the contribution by Kaveh and Jahanshahi (2008), Ant Colony Systems (ACS) are 

applied in order to find the collapse factor of two-dimensional frames. Three variants of these systems are 

developed, and their relative performances are compared in two numerical examples. 

Wong (2009) specifically highlights the Stiffness Method in the field of Structural Limit Analysis. 

He also shows the plastic structural behavior of structures, making comparisons with elastic behavior. The 

plastic flow rule, elastoplastic analysis, incremental elastoplastic analysis, limit analysis via linear 

programming, the factors affecting plastic collapse and some design considerations on plasticity are 

shown. Frames, beams and other structures are solved using elastoplastic analysis and limit analysis. 

In his book, Hosford (2013), in addition to other subjects, introduces the history of the theory of 

plasticity and dislocations, isotropic production criteria, anisotropic plasticity, the effects of strain 

hardening and strain rate dependence, as well as plasticity test reports. 

Nonato (2021) applies the theory of plasticity and limit analysis in the context of uncertain 

parameters to calculate the collapse load of structures and, consequently, carry out reliability analyses. 

The theory of plasticity is concerned with the production phenomena of materials. Rather than 

being elastic, plastic deformations are permanent, which means that if the load that caused the 

deformations is stopped, part of the deformation remains. The theory of plasticity is studied because some 

design situations can allow the engineering materials involved to reach higher levels of deformation 

(greater than the corresponding elastic limit) without losing their design functionality, which increases the 

load capacity of the system. 

Historically, plasticity theory has been approached according to its underlying concepts. In other 

words, the theories that explain the mechanisms of plasticity drive the branch of plasticity theory 

considered. For example, Hosford (2013) discusses three approaches to plasticity theory: 



 
  

 
 

• Continuum theory: this is the most widely applied. It depends on yield criteria and allows the 

prediction of the stress states that cause yielding and the resulting deformations. Therefore, the 

level of cold working under different loading conditions can be compared. 

• Crystallographic sliding mechanisms: by understanding these mechanisms, continuous behavior 

is explained. This approach has been almost successful in predicting anisotropic behavior. 

• Occurrence of sliding: concerned with the mechanism of sliding. Dislocation theory shows how 

crystalline materials are deformed by the sliding process. However, its weak connection with 

continuum theory makes it difficult to apply in many practical cases. 

 

Lubliner (1990) mentions that the adjective "plastic" describes ductile materials, which have the 

properties of being easily formed by means of suitably applied loads and of maintaining their new 

geometry after the load has ceased. The author notes that considerable deformations (from plastic 

forming) are often accompanied by small volumetric changes. Thus, plastic deformation is fundamentally 

a distortion and, consequently, deviatoric stresses are largely responsible for this work. 

He also states that a direct plasticity test can be carried out by producing a state of simple shear 

deformation in a specimen by applying a load, resulting in the aforementioned state. Therefore, when it 

comes to metallic materials, the test that reproduces this condition is the one in which one of the end 

cross-sections of a thin-walled tube is rotated around its longitudinal axis in relation to the other end (pure 

shear). However, it should be noted that this is not a simple test to carry out. For this reason, a tensile test 

is generally preferred, where the simplicity of execution and the machinery make it more attractive to 

check material properties. 

According to Maugin (1992), plastic is the behavior of a solid in which permanent deformations 

occur without damage. In the context of a tensile test, the onset of plastic deformation occurs when the 

material of the specimen reaches its elastic limit. From then on, the specimen is subjected to load 

increments until it ruptures, which is the point at which plastic deformation ceases. Recovery of the elastic 

part of the deformation can be achieved at any time during the process, as long as the specimen is 

unloaded. 

According to Lubliner (1990), incipient or imminent plastic collapse is a state in which a non-zero 

strain rate occurs under constant loading, provided that the following items are satisfied: a) all previous 

deformations must be of the same magnitude as the elastic deformation, so that geometric changes can be 

neglected; and b) acceleration can be neglected and, consequently, the problem can be treated as quasi-

static. A uniaxial tensile test on a ductile material (carbon steel, for example) commonly shows the 

following stress-strain diagram (fig. 1): 

 



 
  

 
 

Figure 1: Idealized stress-strain diagram of a mild steel at room temperature. 

 
Source: Own authorship, 2024. 

 

As can be seen, the material can withstand deformations much greater than the yield strain before 

failure occurs, which is a measure of its ductility. Although there are more realistic models to accurately 

reflect the real behaviour of the material, in order to simplify the calculation involved, the idealized stress-

strain curve is commonly adopted. In many applications, it is not necessary to use a sophisticated model, 

so a simplified constitutive law without work hardening is sufficient for the purposes here. This 

corresponds to the elastic-perfectly plastic material model, which can be seen in figure 2. 

 

Figure 2: Model of elastic-perfect plastic material. 

 
Source: Own authorship, 2024. 

 

The load portion composed of the inclined lines plus the horizontal lines can be described by the 

following equations (Eq. (1) and Eq. (2)): 



 
  

 
 

𝜎 = 𝐸 𝜀     ,     |𝜀| <
𝜎𝑦

𝐸
 , (1) 

 

𝜎 = 𝜎𝑦 𝑠𝑔𝑛(𝜀)     ,     |𝜀| ≥
𝜎𝑦

𝐸
 , (2) 

 

where 𝑠𝑔𝑛(𝜀) takes the value if and if (compressive loading).+1𝜀 > 0 − 1𝜀 < 0 

Therefore, plastic collapse exhibits the typical behavior shown in the last figure, which shows an 

indefinite increase in deflection under constant load. Once yielding is reached, an indefinite amount of 

stress can occur. This material model is only valid for sufficiently ductile materials. This applies to the 

cross-sections of structural elements subject to bending. For example, a beam (with two symmetrical axes 

in its cross-sectional plane) under bending moment applied at its ends is shown in Figure 3.𝑀 

 

Figure 3: Beam under pure bending. 

 
Source: Own authorship, 2024. 

 

For an elastic-perfectly plastic material, the stress distribution over a cross-section sufficiently 

distant from the point of load application (observing the Saint-Venant principle) gradually assumes the 

stress distributions shown in the upper part of Figure 4. Although these distributions appear to represent 

the effect on different cross-sections across the longitudinal axis, this illustrates the same cross-section in 

subsequent stages of load increase (from left to right). 

  



 
  

 
 

Figure 4: Bending distributions and their plastic behavior on a beam cross-section. 

 
Source: Own authorship, 2024. 

 

𝜎 is the acting stress, such that; is the stress required to plasticize the beam material; is the height 

(from the centroidal axis) of the unplasticized surface.𝜎 < 𝜎𝑦𝜎𝑦𝜉 

In situation 1, the acting stress is still less than the elastic limit of the material () and therefore the 

cross-section analyzed only has elastic deformations. As the load increases, the stress also increases, so 

that at a certain point it reaches the yield strength of the material, causing plastic deformations (situation 

2), since it is a perfectly plastic-elastic material. Initially, this phenomenon occurs in most of the outer 

fibers because they are under greater bending stresses (further away from the neutral axis). As this stress is 

never exceeded due to the assumption of this type of material, the adjacent fibers gradually reach the 

stress corresponding to the yield strength, spreading the plastic region (situations 3 and 4) and, 

consequently, decreasing the elastic region. If the loading continues to increase monotonically, the entire 

cross-section is plasticized (situation 5). At this point, the beam is said to experience plastic collapse. The 

plasticized cross-section acts as a plastic hinge (mechanism), providing freedom to twist around the axis 

of symmetry which is orthogonal to the plane of loading application.𝜎 < 𝜎𝑦 

Schematically, the five stress situations are shown in the lower portion of Figure 4. In situations 1 

and 2, as there is no plastic tension, the representation is simply not made. In situation 3, there is plastic 

deformation of most of the outer fibers. Therefore, plastic deformation begins to progress from the 

outermost fibers to the inner ones. This type of deformation affects the cross-section a little more in 



 
  

 
 

situation 4, reducing the elastic region; in 5, the entire cross-section is plasticized, thus creating a 

mechanism which, in this case, is called a plastic hinge. 

The moment-rotation curve that represents these five stages is illustrated in figure 5. However, for 

the idealization of the elastic-perfectly plastic material, the graph is represented by the bilinear shape 

shown in the following figure as a dashed line. 

 

Figure 5: Moment-rotation curve. 

 
Source: Own authorship, 2024. 

 

This idealization means that the cross-section linearly supports the bending moment up to the 

plastic moment capacity. Thereafter, the cross-section produces an undetermined amount of rotation.  

The limit state (in which the body is still safe from collapse) is defined according to the situation 

immediately prior to collapse, i.e. it is a state imminent to plastic collapse. The load applied to reach the 

limit state is called the limit load. 

As most structural systems are statically indeterminate, a local failure (local collapse) does not 

necessarily imply a global failure (total collapse). For these types of structures, a local collapse simply 

means that a structural constraint is no longer present, because a plastic hinge (for bending situations) has 

been created. Following this context, the load required to cause a local collapse is less than that required to 

cause global collapse. Therefore, structural collapse occurs when one or more local collapses occur, 

depending on the structural configuration. 

Quantifying the additional load that a given cross-section can sustain beyond the yield point (when 

the fiber of the outermost material reaches yield strength) is relevant for the designer in order to select the 

most suitable cross-section geometry. So let and be the width and height of a rectangular cross-section, 

respectively. Recalling the stress distributions observed earlier, figure 6 indicates the forces and distances 

at each stage of a three-step transverse bending.𝑏ℎ 



 
  

 
 

Figure 6: Bending distributions along the stages of stress progression in double-symmetrical cross-section. 

 
Source: Own authorship, 2024. 

 

From the stress distributions, the yield bending moment is given by Eq. (3), 

 

𝑀𝑦 = 𝐹𝑒𝑐  
2

3
 ℎ ,      (3) 

 

where is the tensile force due to the plastic part of the tension; is the compressive force due to the plastic 

part of the tension; is the tensile force due to the elastic part of the tension; and is the compressive force 

due to the elastic part of the tension. When only the outermost fibers plasticize, this force is calculated 

from Eq. (4):𝐹𝑝𝑡𝐹𝑝𝑐𝐹𝑒𝑡𝐹𝑒𝑐 

 

𝐹𝑒𝑐 = 𝐹𝑒𝑡 =  
1

2
 𝜎𝑦 𝑏 

ℎ

2
 .      (4) 

 

Let the elastic section modulus be (exclusively a geometric property of the cross-section). Thus, in 

the case of a rectangular cross-section, the bending moment of the flow is expressed by Eq. (5):𝑍𝑒 

 

𝑀𝑦 = 𝜎𝑦  
𝑏 ℎ2

6
= 𝜎𝑦𝑍𝑒 .      (5) 

 

The elastoplastic bending moment is composed of the elastic () and plastic () parts, given by Eq. 

(6):𝑀𝑒𝑝𝑀𝑒
𝑒𝑝𝑀𝑝

𝑒𝑝
 

 

𝑀𝑒𝑝 = 𝑀𝑒
𝑒𝑝

+ 𝑀𝑝
𝑒𝑝

 ,      (6) 

 

where the elastic component and the plastic part are respectively indicated by Eq. (7) and (8): 

 

𝑀𝑒
𝑒𝑝

= 𝜎𝑦 𝜉2  
𝑏 ℎ2

6
 ,      (7) 

 

𝑀𝑝
𝑒𝑝

= 𝐹𝑝𝑐 𝑠 ,      (8) 



 
  

 
 

 

where lever arm and are defined, respectively, according to Eq. (9) and Eq. (10):𝑠ℎ𝑝 

 

𝑠 = 𝜉 ℎ + ℎ𝑝 ,      (9) 

 

ℎ𝑝 =
ℎ

2
(1 − 𝜉) .      (10) 

 

From then on, s is expressed as a function of ξ, as shown in Eq.(11): 

 

𝑠 =
ℎ

2
(1 + 𝜉) .      (11) 

 

Therefore, in the case of a doubly symmetrical cross-section, the contribution of the plastic part of 

the force is given by Eq.(12): 

 

𝐹𝑝𝑐 = 𝐹𝑝𝑡 = 𝜎𝑦 𝑏 
ℎ

2
 (1 − 𝜉) .      (12) 

 

Thus, Eq.(13) gives the plastic part of the bending moment: 

 

𝑀𝑝 = 𝜎𝑦  
𝑏 ℎ2

4
 (1 − 𝜉2) .      (13) 

 

Therefore, the elastoplastic bending moment results in the following relation (Eq.(14)): 

 

𝑀𝑒𝑝 = 𝜎𝑦  
𝑏 ℎ2

6
 
(3 − 𝜉2)

2
 .      (14) 

 

From the situation represented by the fully plasticized cross-section, the plastic bending moment 

and force are expressed by Eq.(15) and Eq.(16) respectively: 

 

𝑀𝑝 = 𝐹𝑝𝑐  
ℎ

2
 ,      (15) 

 

𝐹𝑝𝑐 = 𝜎𝑦 𝑏 
ℎ

2
  .      (16) 

 

Let Z_p be the plastic section modulus of the cross-section. Thus, the plastic moment of the 

rectangular cross-section is expressed by Eq.(17): 

 

𝑀𝑝 = 𝜎𝑦  
𝑏 ℎ2

4
= 𝜎𝑦 𝑍𝑝 .      (17) 

 



 
  

 
 

Therefore, the ratio between the plastic moment and the elastic moment, also called the shape 

factor f_s (dependent only on the geometry of the cross-section), is given by Eq.(18): 

 

𝑓𝑠 =
𝑀𝑝

𝑀𝑦

=
𝑍𝑝

𝑍𝑒

 .      (18) 

 

Furthermore, in the specific case of rectangular cross-sections, the shape factor is indicated by 

Eq.(19): 

 

𝑓𝑠 =

𝑏 ℎ2

4
𝑏 ℎ2

6

=
3

2
 ,      (19) 

 

which means that this section can withstand fifty percent more bending than in the yield moment 

condition, before a plastic hinge occurs. Each type of cross-section has its own form factor. Thus, the form 

factor is a measure of the plastic's efficiency under bending. 

 

METHODOLOGY 

This section describes the strategy for applying the concepts already described to an example 

solved in two stages: (a) literally and conceptually; (b) numerically, in order to verify the increase in the 

capacity to withstand the bending moment in the context of an order. In addition, the example is solved by 

analytical calculation. 

For this purpose, the example consists of a simply supported beam subjected to a concentrated load 

of medium span. Its cross-section is rectangular with base b, and height h, with the transverse load, P, 

applied at its centroidal point avoiding the phenomenon of torsion. The length of the span is defined by 

L.In the central region, the length of the elastoplastic region is defined by L_p.The aim is to obtain the 

elastic and plastic loads that can be applied without the system failing. 

Tab.1 gives the numerical values for the parameters involved in the example. 

 

Table 1: Input data for the simply supported beam example. 

Input data Variable Value 

Rectangular cross-section base 𝑏 25 𝑚𝑚 

Height of rectangular cross-section ℎ 45 𝑚𝑚 

Beam length 𝐿 1500 𝑚𝑚 

Flow resistance 𝜎𝑦 550 𝑀𝑃𝑎 

Source: author (2024). 

 

Figure 7 shows this simply supported beam. 

 

 



 
  

 
 

Figure 7: Plasticized region of the plastic hinge of a simply supported beam under bending. 

 
Source: Own authorship, 2024. 

 

RESULTS 

The first step in the solution begins with the conceptual and literal approach. In the case of the 

simply supported beam, the bending moment in the middle of the beam span (at the location of the plastic 

hinge) is given by Eq. (20): 

 

𝑀𝑐 =
𝑃 𝐿

4
 .      (20) 

 

Thus, the load at which the yield occurs first is expressed by Eq. (21): 

 

𝑃𝑦 = 4
𝑀𝑦

𝐿
 .      (21) 

 

The collapse load occurs when the critical bending moment at mid-span reaches the plastic 

moment capacity, which is represented by Eq. (22): 

 

PP=4MPL.      (22) 

 

The relationship between collapse and yield load produces Eq. (23): 

 

PpPy=4MpL4MyL=MpMy=fs .      (23) 

 



 
  

 
 

Therefore, for an isostatic structure, in which its structural members have the same cross-section 

(shape and dimensions), the ratio between the collapse load and the first yield load is simply the shape 

factor of the member's cross-section.𝑓𝑠 

The second part of the resolution refers to replacing the numerical input data to obtain the 

numerical output. From this point on, the calculation is based on the input data from Tab 1. 

The elastic section modulus, 𝑍𝑒 in the case of a rectangular cross-section, is obtained from Eq. 

(24): 

 

Ze=26=26=8437,5 3 .     b h25 x 45mm (24) 

 

Then, applying Eq. (5), the value of the bending moment of the flow is obtained from Eq. (25): 

 

My=ye=550 x 8437.5=4,640,625 N mm .σZ (25) 

 

The plastic section modulus is expressed by Eq. (26): 

 

Zp=24=24=12656,25 3 .     b h25 x 45mm (24) 

 

Applying Eq. (17), the plastic bending moment is obtained from Eq. (27): 

 

Mp=yp=550 x 8437.5=6,960,937.5 N mm .σZ (27) 

 

According to Eq. (21), the maximum load that can be applied to reach the yield strength is 

calculated in Eq. (28): 

 

Py=4MyL=44,640.6251500=12,375 N .      (28) 

 

According to Eq. (22), the maximum plastic load before failure is calculated in Eq. (29): 

 

Pp=4MpL=46,960,937.51500=18,562.5 N .      (29) 

 

Just for checking purposes, Eq. (18) can be used to calculate the form factor (Eq. (30)), 

 

fs=PpPy=18,562,512,375=1.5 ,  (30) 

 

as expected. 

 

CONCLUSIONS 

This work takes up the concepts of elastic and plastic bending moment capacities of Timoshenko-

Ehrenfest beams. The formulation is based simultaneously on the concepts of plasticity theory and a 



 
  

 
 

rectangular Timoshenko-Ehrenfest beam. The material model has been simplified to elastic-perfectly 

plastic. The stress distributions and the plastic hinges formed were associated to present the structural 

mechanism that causes rupture in a beam. 

A simply supported beam was modeled in terms of the formulation presented and calculated for the 

input data provided. The form factor of the rectangular cross-section was confirmed through the 

calculations of the solved example. 

Based on the concepts and theory presented in this work, a structural system can be analyzed in 

terms of an upper limit state, allowing the designer to increase the capacity of a structure composed of 

beam elements. 
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